Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes
Abstract
1. Introduction
2. Computational Methods
3. Results
3.1. Isolated CNTs
3.2. CNT Arrays
- (2,0) CNT
- (2,2) CNT
- (3,2) CNT
- (3,3) CNT
4. Summary, Perspectives of Further Investigations
- Make further tests, especially including functionals, providing a good description of van der Waals forces.
- Determine the equilibrium distance between CNTs (if it exists). On the ground of the present calculation, we conjecture that such arrays does not exist for small-diameter CNTs and are stable only for larger-diameter CNTs. This last case has been examined, among others, in [13], where it has been established that large-diameter CNTs preserve their structures under decreasing inter-tube distances, only undergoing deformations. One can guess that in this case, the distance between the walls of CNTs is the order of 3.5Å, like the distance between graphene layers in graphite. We hope to address this problem in the future; the approach of [13] is a combination of classical molecular dynamics (MD) simulations and continuum analyzis, and it has been performed for large-diameter CNTs (n = 17 or more). We hope that this DFT study can shed additional light on the behavior of CNT arrays for n values ranging from 3 to approximately 15.
- For equilibrium-distance arrays, the following properties are of particular interest: the geometry of CNTs; DOS and band structures; optical properties; and exciton diffusion in arrays. All of these properties are crucial for the concept of CNT-array-based solar cells. Unfortunately, their computational demand seems to be enormous.
- It would be beneficial for us to extensively examine the carbon allotropes emerging from small-diameter CNTs upon decreasing the inter-tube distance, such as compute radial distribution functions, coordination analyzis, electronic localization function (ELF) plots, and thermodynamic functions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Wojtkiewicz, J.; Brzostowski, B.; Pilch, M. Electronic and Optical Properties of Carbon Nanotubes Directed to Their Applications in Solar Cells. In Proceedings of the Parallel Processing and Applied Mathematics. PPAM 2019, Bialystok, Poland, 8–11 September 2019; Lecture Notes in Computer Science; Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Eds.; Springer: Cham, Switzerland, 2020; Volume 12044. [Google Scholar] [CrossRef]
- Wojtkiewicz, J.; Pilch, M. Theoretical study of carbon nanotubes as candidates for active layer in solar cells. Comput. Theoret. Chem. 2022, 1216, 113846. [Google Scholar] [CrossRef]
- Brzostowski, B.; Durajski, A.P.; Gruszka, K.M.; Wojtkiewicz, J. Structural and Electronic Properties of Small-Diameter Carbon NanoTubes: A DFT Study. Lect. Notes Comput. Sci. 2023, 13827, 392–402. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, Y. Structural, electronic and optical properties of smallest (2,2) carbon nanotube: A plane-wave pseudopotential total energy calculation. J. Mol. Struct. THEOCHEM 2010, 942, 88–92. [Google Scholar] [CrossRef]
- Ren, Z.; Lan, Y.; Wang, Y. Aligned Carbon Nanotubes. Physics, Concepts, Fabrication and Devices; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zamora-Ledezma, C.; Blanc, C.; Puech, N.; Maugey, M.; Zakri, C.; Anglaret, E.; Poulin, P. Conductivity anisotropy of assembled and oriented carbon nanotubes. Phys. Rev. E 2012, 85, 019901. [Google Scholar] [CrossRef]
- Wang, D.; Song, P.; Liu, C.; Wu, W.; Fan, S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19, 075609. [Google Scholar] [CrossRef] [PubMed]
- Óvári, L.; Farkas, A.P.; Palotxaxs, K.; Vxaxri, G.; Szenti, I.; Berkó, A.; Kiss, J.; Kxoxnya, Z. Hexagonal boron nitride on metal surfaces as a support and template. Surf. Sci. 2024, 79, 100637. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Yu, P. The Cohesive Energy and Vibration Characteristics of Parallel Single-Walled Carbon Nanotubes. Molecules 2021, 26, 7470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-L.; Xu, F.-F.; Jia, Y.-F. Transport through the intertube links between two parallel carbon nanotubes. Phys. Rev. B 2006, 74, 155430. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Zhu, B. Adhesion between two carbon nanotubes: Insights from molecular dynamics simulations and continuum mechanics. Int. J. Mech. Sci. 2018, 138–139, 323–336. [Google Scholar] [CrossRef]
- Gupta, G.H.; Kadakia, S.; Agiwal, D.; Keshari, T.; Kumar, S. Borophene nanomaterials: Synthesis and applications in biosensors. Mater. Adv. 2024, 5, 1803–1816. [Google Scholar] [CrossRef]
- Kamal, C.; Chakrabarti, A. Comparison of electronic and geometric structures of nanotubes with subnanometer diameters: A density functional theory study. Phys. Rev. B 2007, 76, 075113. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Ordejón, P.; Artacho, E.; Soler, J.M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B Rapid Comm. 1996, 53, R10441. [Google Scholar] [CrossRef] [PubMed]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys. Rev. B 1991, 43, 8861. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Available online: https://nanotube.msu.edu/tubeASP/ (accessed on 25 August 2024).
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Goyenola, C.; Stafstrom, S.; Schmidt, S.; Hultman, L.; Gueorguiev, G.K. Carbon Fluoride, CFx: Structural Diversity as Predicted by First Principles. J. Phys. Chem. C 2014, 118, 6514–6521. [Google Scholar] [CrossRef]
CNT | (2,0) | (2,2) | (3,2) | (3,3) |
H-L gap | 1.20 | 0.00 | 0.29 | 0.00 |
d [Å] | (2,0) | (2,2) | (3,3) | (3,2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 × 1 | 2 × 2 | 3 × 3 | 1 × 1 | 2 × 2 | 3 × 3 | 1 × 1 | 2 × 2 | 1 × 1 | 2 × 2 | |
5.0 | 1.58 | 0.00 | 0.445 | 0.01 | 0.01 | 0.00 | 2.15 | 1.10 | – | – |
7.5 | 1.20 | 1.2 | 1.20 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.55 | – |
10.0 | 1.20 | 1.20 | 1.20 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.29 | 0.29 |
15.0 | 1.20 | 1.20 | 1.20 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.29 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzostowski, B.; Wojtkiewicz, J. Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes. Materials 2025, 18, 4095. https://doi.org/10.3390/ma18174095
Brzostowski B, Wojtkiewicz J. Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes. Materials. 2025; 18(17):4095. https://doi.org/10.3390/ma18174095
Chicago/Turabian StyleBrzostowski, Bartosz, and Jacek Wojtkiewicz. 2025. "Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes" Materials 18, no. 17: 4095. https://doi.org/10.3390/ma18174095
APA StyleBrzostowski, B., & Wojtkiewicz, J. (2025). Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes. Materials, 18(17), 4095. https://doi.org/10.3390/ma18174095