Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fe2TiO4–CaO and FeTiO3–CaO Systems During Sintering at 1200 °C
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of FeTiO3 and Fe2TiO4
2.2. Characterization Methods
2.3. Production of Diffusion Couple
2.4. Reaction of Diffusion Couple
3. Results
3.1. Interfacial Microstructure of the Diffusion Couple
3.2. Interface Formation Mechanisms
3.3. The Thickness of the Layer of Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, H.; Gan, M.; Wen, X.P.; Ji, Z.Y.; Fan, X.H.; Li, S.X.; Li, J.H.; Wang, S.; Wang, X.Y.; Xie, L.B. Promoting low-temperature consolidation of vanadium titano-magnetite pellets by high-pressure grinding roll: Mechanism of mechanical activation. J. Mater. Res. Technol. 2024, 30, 2435–2445. [Google Scholar] [CrossRef]
- Lai, L.D.; Zhou, H.Y.; Lai, B. Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadium-titanium magnetite: Performance, transformation pathways and mechanism. Chem. Eng. J. 2018, 349, 633–645. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, W.; Zhang, X.H.; Hu, S.Y.; Guo, H.W.; Chu, M.S. Revealing the Softening-Melting Behaviors and Slag Characteristics of Vanadium-Titanium Magnetite Burden with Various MgO Addition. Minerals 2022, 12, 842. [Google Scholar] [CrossRef]
- Wu, Q.X.; Wang, J.P.; Che, D.; Gu, Y. Situation analysis and sustainable development suggestions of vanadium resources in China. Resour. Ind. 2016, 18, 29. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.H.; Qin, Z.F.; Zhang, G.Q.; Yue, H.R.; Liang, B.; Luo, D.M. Investigation of the selective oxidation roasting of vanadium-iron spinel. Powder Technol. 2021, 387, 434–443. [Google Scholar] [CrossRef]
- Tong, S.; Ai, L.Q.; Hong, L.K.; Sun, C.J.; Li, Y.Q.; Yuan, Y.P. Reduction of chengde vanadium titanium magnetite concentrate by microwave enhanced Ar–H2 atmosphere. Int. J. Hydrogen Energy 2024, 49, 42–48. [Google Scholar] [CrossRef]
- Gu, H.Z.; Cao, J.; Wu, J.J.; Xu, M.; Ma, W.H. Recovery of Ti-bearing blast furnace slag and diamond wire saw silicon powder waste by alloying and electromagnetic separation technique. J. Clean. Prod. 2022, 359, 132080. [Google Scholar] [CrossRef]
- Li, S. Study on China’s Iron Ore Import and Countermeasures. Ph.D. Thesis, Dongbei University of Finance and Economics, Dalian, China, 2010. [Google Scholar]
- Zhang, D.B.; Wan, H.M.; Zheng, J. Analysis on global iron ore resources and China’s iron ore supply and demand. China Metall. 2004, 6, 26–29. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, D.H.; Liu, W.H.; Zhang, B.X.; He, R. Global vanadium industry development report 2022. Iron Steel Vanadium Titan. 2023, 44, 1–8. [Google Scholar] [CrossRef]
- Matykina, E.; Arrabal, R.; Mingo, B.; Mohedano, M.; Pardo, A.; Merino, M.C. In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants. Surf. Coat. Technol. 2016, 307, 1255–1264. [Google Scholar] [CrossRef]
- Li, H.Y.; Wu, J.; Li, M.Y.; Wang, Y.D. Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts 2024, 14, 368. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Vu, T.D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.T.; Mai, L.Q.; Long, Y. Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef]
- Chuanyu, S.; Keti, V.; Gioele, P.; Angeloclaudio, N.; Yannick, H.B.; Giuseppe, P.; Enrico, N.; Chiara, G.; Laura, M.; Thomas, A.Z.; et al. Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy. Electrochim. Acta 2019, 318, 913–921. [Google Scholar] [CrossRef]
- Tarnawski, Z.; Kim-Ngan, N.T.H. Hydrogen storage characteristics of Ti– and V–based thin films. J. Sci. Adv. Mater. Devices 2016, 1, 141–146. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Qiu, S.J.; Zhang, B.; Wu, S.Q. reparation and properties of TiO—2-whitening PA6/GF composites with excellent mechanical performance. China Plast. 2025, 39, 12–18. [Google Scholar] [CrossRef]
- Shaarawy, H.H.; Hussein, H.S.; Hussien Nabila, H.A.B.; Ghada, A.H.; Salwa, I. Green production of titanium dioxide nanometric particles through electrolytic anodic dissolution of titanium metal. Environ. Sci. Pollut. Res. 2023, 30, 24043–24061. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Jayakumar, V.; Udayan, Y.; Sathishkumar, M.; Muthu, S.M.; Gautam, P.; Nag, A. Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties. Appl. Mater. Today 2024, 41, 102481. [Google Scholar] [CrossRef]
- Liu, H.C.; Fan, L.; Zhang, H.B.; Wang, Y.Y.; Tang, J.L.; Bai, X.H.; Sun, M.X. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments. J. Chin. Soc. Corros. Prot. 2022, 42, 175–185. Available online: https://www.jcscp.org/EN/10.11902/1005.4537.2021.050 (accessed on 23 July 2025).
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2024, 17, 114. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Lei, Y.; Ma, W.H.; Ren, Y.S. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti–bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Waste Manag. 2023, 157, 36–46. [Google Scholar] [CrossRef]
- Liu, Z.J.; Li, S.D.; Zhang, J.L.; Wang, Y.Z.; Wang, G.L.; Liu, L.L. Production practice and development trend of sinter with ultra-high basicity. Iron Steel 2022, 57, 39. [Google Scholar] [CrossRef]
- Wang, M.Y.; Tang, J.; Chu, M.S.; Shi, Q.; Zhang, Z. Prediction and optimization of flue pressure in sintering process based on SHAP. Int. J. Miner. Metall. Mater. 2025, 32, 346–359. [Google Scholar] [CrossRef]
- Chen, Y. The Investigation of Phase Constitution and Reaction Between Titanium Dioxide and Calcium Ferrite. Ph.D. Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
- Lin, W.K.; Hu, P. Influence of TiO2 content and basicity level on the metallogenic regularity of V-Ti sinter. Iron Steel Vanadium Titan. 2020, 41, 94. [Google Scholar] [CrossRef]
- Liao, J.F.; Zhao, B.J. Phase equilibrium studies of titanomagnetite and ilmenite smelting slags. Int. J. Miner. Metall. Mater. 2022, 29, 2162–2171. [Google Scholar] [CrossRef]
- Yang, S.T.; Tang, W.D.; Xue, X.X. Effect of TiO2 on the sintering behavior of low-grade vanadiferous titanomagnetite ore. Materials 2021, 14, 4376. [Google Scholar] [CrossRef]
- Chen, B.J.; Jiang, T.; Wen, J.; Yang, G.D.; Yu, T.X.; Zhu, F.X.; Hu, P. High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets. Int. J. Miner. Metall. Mater. 2024, 31, 498–507. [Google Scholar] [CrossRef]
- Budzik, R. The balance of titanium and vanadium in the blast furnace with the use of sinter containing a titanium-vanadium-magnetite concentrate. Metalurgija 2007, 46, 145–147. [Google Scholar] [CrossRef]
- Ding, C.Y.; Lv, X.W.; Chen, Y.; Li, G.; He, W.C.; Lv, X.M. Reaction sequence and formation kinetics of perovskite by calcium ferrite–titania reaction. J. Alloys Compd. 2019, 789, 537–546. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, S.T.; Jiang, T.; Cue, X.X. Influence of basicity on high-chromium vanadium-titanium magnetite sinter properties, productivity, and mineralogy. JOM 2015, 67, 1203–1213. [Google Scholar] [CrossRef]
- Wang, Z.; Pinson, D.; Chew, S.; Rogers, H.; Monaghan, B.J.; Zhang, G.Q. Interaction of New Zealand ironsand and flux materials. ISIJ Int. 2016, 56, 1315–1324. [Google Scholar] [CrossRef]
- Wang, W.; Yue, H.R.; Xue, X.X. Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple. Int. J. Miner. Metall. Mater. 2020, 27, 1216–1225. [Google Scholar] [CrossRef]
- Ren, Z.S.; Hu, X.J.; Li, S.Y.; Xue, X.X.; Chou, K.C. Interdiffusion in the Fe2O3-TiO2 system. Int. J. Miner. Metall. Mater. 2013, 20, 273–278. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.G.; Liu, L.B.; Bai, W.M.; Zeng, L.J. Effect of Fe content on microstructures and properties of Ti6Al4V alloy with combinatorial approach. Trans. Nonferrous Met. Soc. China 2018, 28, 1714–1723. [Google Scholar] [CrossRef]
- Ren, Z.; Hu, X.; Xue, X.; Chou, K. Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method. J. Alloys Compd. 2013, 580, 182–186. [Google Scholar] [CrossRef]
Point No. | Fe | Ti | Ca | Phase Identified |
---|---|---|---|---|
01 | 17.1 | 23.5 | 31.7 | Calcium ferrite and CaTiO3 |
02 | 38.5 | 13.6 | 15.9 | CaTiO3 |
03 | 54.3 | 9.2 | 7.8 | CaTiO3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Gao, J.; Wang, F.; Yu, Y.; Qi, Y. Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fe2TiO4–CaO and FeTiO3–CaO Systems During Sintering at 1200 °C. Materials 2025, 18, 4091. https://doi.org/10.3390/ma18174091
Wang B, Gao J, Wang F, Yu Y, Qi Y. Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fe2TiO4–CaO and FeTiO3–CaO Systems During Sintering at 1200 °C. Materials. 2025; 18(17):4091. https://doi.org/10.3390/ma18174091
Chicago/Turabian StyleWang, Bin, Jianjun Gao, Feng Wang, Yue Yu, and Yuanhong Qi. 2025. "Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fe2TiO4–CaO and FeTiO3–CaO Systems During Sintering at 1200 °C" Materials 18, no. 17: 4091. https://doi.org/10.3390/ma18174091
APA StyleWang, B., Gao, J., Wang, F., Yu, Y., & Qi, Y. (2025). Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fe2TiO4–CaO and FeTiO3–CaO Systems During Sintering at 1200 °C. Materials, 18(17), 4091. https://doi.org/10.3390/ma18174091