Rare Earth Elements in Heat-Resistant Magnesium Alloys: Mechanisms, Performance, and Design Strategies
Abstract
1. Introduction
2. Mechanics and Heat-Resistance Strengthening Mechanism
2.1. Strengthening Mechanisms of Mechanical Properties
2.2. Optimization of Thermal Resistance
2.3. The Effect of Multi-Element Alloying
2.4. Optimization of Alloy Composition
3. Application and Performance of RE Elements in Mg Alloys
3.1. Overview of RE Applications in Mg Alloys
3.2. Properties and Development of Mg-Al-RE Alloy
3.3. Strengthening of Mg-Zn Alloy by RE Elements
3.4. Development and Limitations of Mg–RE Alloys
3.5. Multicomponent Magnesium Alloys Containing REs
4. Application and Development
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Song, J.; Chen, J.; Xiong, X.; Peng, X.; Chen, D.; Pan, F. Research advances of magnesium and magnesium alloys worldwide in 2021. J. Magnes. Alloys 2022, 10, 863–898. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research advances of magnesium and magnesium alloys worldwide in 2022. J. Magnes. Alloys 2023, 11, 2611–2654. [Google Scholar] [CrossRef]
- She, J.; Chen, J.; Xiong, X.; Yang, Y.; Peng, X.; Chen, D.; Pan, F. Research advances of magnesium and magnesium alloys globally in 2023. J. Magnes. Alloys 2024, 12, 3441–3475. [Google Scholar] [CrossRef]
- Tian, Z.; Dong, B.-X.; Chen, X.-W.; Fan, J.; Yang, H.-Y.; Shu, S.-L.; Qiu, F.; Jiang, Q.-C. Effects and mechanisms of rare earth and calcium on the flame retardancy of magnesium alloys. J. Mater. Res. Technol. 2024, 30, 9542–9560. [Google Scholar] [CrossRef]
- Yang, H.; Xie, W.; Song, J.; Dong, Z.; Gao, Y.; Jiang, B.; Pan, F. Current progress of research on heat-resistant Mg alloys: A review. Int. J. Miner. Metall. Mater. 2024, 31, 1406–1425. [Google Scholar] [CrossRef]
- He, J.; Chen, W.Z.; Zhang, Z.J.; Chen, X.M.; Ma, J.F.; Wang, W.K.; Zhang, W.C. Extrusion techniques on microstructure optimization and quantitative analysis of texture influence on ductility improvement for heat-resistant Mg–Nd–Zn–Zr magnesium alloy. J. Mater. Sci. 2022, 57, 4334–4353. [Google Scholar] [CrossRef]
- Xie, D.; Pan, H.; Pan, Z.; Fu, T.; Zeng, Z.; Xie, H.; Ren, Y.; Tang, W.; Qin, G. Achieving outstanding heat-resistant properties in Mg alloy via constructing stable solute-network. Mater. Res. Lett. 2023, 11, 374–382. [Google Scholar] [CrossRef]
- Zhu, X.-P.; Yao, J.-Q.; Wu, H.-L.; Liu, X.-W.; Liu, H.; Fan, Z.-T.; Lü, S.-L.; Wang, K.; Wang, Z.-D. Microstructure and mechanical properties of a cast heat-resistant rare-earth magnesium alloy. China Foundry 2023, 20, 289–298. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Li, C.; Xie, H.; Jiang, B.; Dong, Z.; Jin, P.; Pan, F. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application. J. Mater. Res. Technol. 2023, 26, 2919–2940. [Google Scholar] [CrossRef]
- Ahmadi, M.; Tabary, S.A.A.B.; Rahmatabadi, D.; Ebrahimi, M.S.; Abrinia, K.; Hashemi, R. Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 2022, 19, 1537–1562. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, Q.; Guan, K.; Meng, J.; Cao, Z. Microstructure and mechanical properties of a peak-aged Mg-5Y-2.5Nd-1.5Gd-0.5Zr casting alloy. J. Alloys Compd. 2018, 731, 704–713. [Google Scholar] [CrossRef]
- Luk’yanova, E.A.; Tarytina, I.E.; Dobatkina, T.V.; Martynenko, N.S.; Rybalchenko, O.V.; Dobatkin, S.V. Prospects of Development of New High-Strength Magnesium-Based Alloys. Met. Sci. Heat Treat. 2024, 66, 498–503. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, H.; Guo, X.; Li, Y.; Hu, H.; Song, J.; Jiang, B.; Pan, F. Recent progress on cast magnesium alloy and components. J. Mater. Sci. 2024, 59, 9969–10002. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Z.; Han, S.; Gu, Y.; Zhu, Z.; Evolution, H.Z. limitations; advantages, and future challenges of magnesium alloys as materials for aerospace applications. J. Alloys Compd. 2024, 1008, 176707. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, Q.; Guan, K.; Cao, Z.-Y.; Meng, J. Microstructural evolution and aging behavior of Mg–4.5Y–2.5Nd–1.0Gd–0.5Zr alloys with different Zn additions. Rare Met. 2021, 40, 2188–2196. [Google Scholar]
- Xie, H.; Wu, G.; Zhang, X.; Liu, W.; Ding, W. The role of Gd on the microstructural evolution and mechanical properties of Mg-3Nd-0.2Zn-0.5Zr alloy. Mater. Charact. 2021, 175, 111076. [Google Scholar] [CrossRef]
- Xie, H.; Wu, G.; Zhang, X.; Li, Z.; Liu, W.; Zhang, L.; Tong, X.; Sun, B. Microstructural Characteristics and Mechanical Properties of Cast Mg–3Nd–3Gd–xZn–0.5Zr Alloys. Acta Metall. Sin. 2021, 35, 922–940. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, X.; Wu, G.; Liu, W.; He, X.; Ding, W. High cycle fatigue behavior and mechanical performance of a novel sand-cast Mg-Nd-Gd alloy: Effect of heat treatment. Mater. Sci. Eng. A 2021, 813, 141172. [Google Scholar] [CrossRef]
- Zheng, X.; Dong, J.; Wang, S. Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. J. Magnes. Alloys 2018, 6, 95–99. [Google Scholar] [CrossRef]
- Xu, W.; Fu, P.; Wang, N.; Yang, L.; Peng, L.; Chen, J.; Ding, W. Effects of processing parameters on fabrication defects, microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process. J. Magnes. Alloys 2024, 12, 2249–2266. [Google Scholar] [CrossRef]
- Liu, X.B.; Chen, R.S.; Han, E.H. Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 2008, 465, 232–238. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, S.; Easton, M.A.; Zhang, M.; Qiu, D.; Wu, G.; Liu, W.; Ding, W. Heat treatment, microstructure and mechanical properties of a Mg–Gd–Y alloy grain-refined by Al additions. Mater. Sci. Eng. A 2013, 576, 298–305. [Google Scholar] [CrossRef]
- Xie, H.; Wu, G.; Zhang, X.; Zhang, J.; Ding, W. The role of Yb content on the microstructural evolution and mechanical characteristics of cast Mg-9Gd-0.5Zn-0.2Zr alloy. Mater. Sci. Eng. A 2021, 817, 141292. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Yan, J.; Chen, P. Microstructure and high temperature mechanical properties of the Mg-Gd-Y(-Nd)-Zr alloy. J. Mater. Res. Technol. 2023, 24, 866–878. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, H.; Wang, L.; Wu, Y.; Wang, L. Microstructure and mechanical property of Mg–8.31Gd–1.12Dy–0.38Zr alloy. Mater. Sci. Eng. A 2008, 477, 193–197. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.; Deng, Q.; Chang, Z.; Wu, Q.; Xue, Y.; Yang, K.; Chen, Q.; Peng, L. Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded Mg–Gd(-Y)-Zn-Mn alloys. Mater. Sci. Eng. A 2021, 810, 141019. [Google Scholar] [CrossRef]
- Mansoor, A.; Du, W.; Yu, Z.; Liu, K.; Ding, N.; Fu, J.; Lou, F.; Li, S. Improved mechanical performance of double-pass extruded Mg-Gd-Er-Zr alloys with various rare earth contents. Mater. Sci. Eng. A 2022, 840, 142922. [Google Scholar] [CrossRef]
- Bi, G.L.; Wang, Y.; Jiang, J.; Gu, J.; Li, Y.; Chen, T.; Ma, Y. Microstructure and mechanical properties of extruded Mg-Y-Zn (Ni) alloys. J. Alloys Compd. 2021, 881, 160577. [Google Scholar] [CrossRef]
- Bohlen, J.; Nürnberg, M.R.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef]
- Zheng, X.; Du, W.; Wang, Z.; Li, S.; Liu, K.; Du, X. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5 Zr alloy on the route of extrusion, rolling and aging. Mater. Lett. 2018, 212, 155–158. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Huang, S.; Gao, S.; Guo, S.; Liu, S.; Chen, X.; Pan, F. Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long period stacking ordered phase. Mater. Sci. Eng. A 2018, 733, 267–275. [Google Scholar] [CrossRef]
- Jiang, R.; Qian, S.; Dong, C.; Qin, Y.; Wu, Y.; Zou, J.; Zeng, X. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution. J. Mater. Sci. Technol. 2021, 72, 104–113. [Google Scholar] [CrossRef]
- Penghuai, F.; Liming, P.; Haiyan, J.; Zhenyan, Z.; Chunquan, Z. Fracture behavior and mechanical properties of Mg–4Y–2Nd–1Gd–0.4 Zr (wt.%) alloy at room temperature. Mater. Sci. Eng. A 2008, 486, 572–579. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Li, W.; Zhao, Y.; He, N.; Qin, S. Effect of trace Al and Ca co-addition and solution treatment on the microstructure and mechanical properties of Mg-10Gd alloys. Mater. Res. Express 2023, 10, 076505. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, X.; Qiu, X.; Liu, K.; Nan, C.; Tang, D.; Meng, J. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy. J. Alloys Compd. 2009, 471, 322–330. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Mao, P.-L.; Yu, B.-Y.; Guo, Q.-Y. Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy. Trans. Nonferrous Met. Soc. China 2010, 20, s311–s317. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, X.; Li, Q.; Wang, D.; Wu, Z. Application and research progress of first principles calculation in magnesium alloys. Mater. Today Commun. 2024, 41, 110317. [Google Scholar] [CrossRef]
- Wang, T.; Liu, F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook. J. Magnes. Alloys 2022, 10, 326–355. [Google Scholar] [CrossRef]
- Shen, Q.; Ba, Y.; Zhang, P.; Song, J.; Jiang, B.; Pan, F. Recent progress in the research on magnesium and magnesium alloy foils: A short review. Int. J. Miner. Metall. Mater. 2024, 31, 842–854. [Google Scholar] [CrossRef]
- Song, X.; Fu, X.; Wang, M. First–principles study of β′ phase in Mg–RE alloys. Int. J. Mech. Sci. 2023, 243, 108045. [Google Scholar] [CrossRef]
- Dong, X.; Wei, B.; Legut, D.; Zhang, H.; Zhang, R. Electrochemical Pourbaix diagrams of Mg–Zn alloys from first-principles calculations and experimental thermodynamic data. Phys. Chem. Chem. Phys. 2021, 23, 19602–19610. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Xiao, W.; Ye, F.; Fu, Y.; Zhao, X.; Ma, C. The effects of substitution of yttrium for Ce-rich mischmetal on the mechanical properties and thermal conductivity of Mg–4Al–4Zn–4RE alloy. Mater. Charact. 2024, 212, 113959. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhou, J. Study on the strengthening mechanism of rare earth yttrium on magnesium alloys. Mater. Sci. Eng. A 2022, 850, 143513. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Xie, J.; Liu, S.; Fu, W.; Wu, R. Developing a Mg alloy with ultrahigh room temperature ductility via grain boundary segregation and activation of non-basal slips. Int. J. Plast. 2023, 162, 103548. [Google Scholar] [CrossRef]
- Friedrich, H.E.; Mordike, B.L. Technology of magnesium and magnesium alloys. Magnes. Technol. Metall. Des. Data Appl. 2006, 6, 219–430. [Google Scholar]
- Fu, T.; Sun, X.; Ge, C.; Xie, D.; Li, J.; Pan, H.; Qin, G. Achieving high strength-ductility synergy in dilute Mg-Al-Ca alloy by trace Ce addition. J. Alloys Compd. 2022, 917, 165407. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, Y.; Wang, L.; Wang, L.; Fan, R.; Ma, T.; Zhao, S. Effect of Substituting Nd for Y on Microstructure and Mechanical Properties of Mg-7Y-2Al Alloy. J. Mater. Eng. Perform. 2024, 33, 4594–4601. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Zhou, W.; Li, D.; Qin, M.; Zeng, X. Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys. J. Mater. Res. 2021, 36, 3145–3154. [Google Scholar] [CrossRef]
- Yang, Q.; Guan, K.; Bu, F.; Zhang, Y.; Qiu, X.; Zheng, T.; Liu, X.; Meng, J. Microstructures and tensile properties of a high-strength die-cast Mg–4Al–2RE–2Ca–0.3Mn alloy. Mater. Charact. 2016, 113, 180–188. [Google Scholar] [CrossRef]
- Luo, W.; Yin, W.-L.; Li, Y.-H.; Dai, J.; He, H.; Li, K. Research on microstructure and mechanical properties of die casting Mg-4Al-1Si-3RE (Ce, La) and AS41 alloys. Mater. Today Commun. 2022, 33, 104625. [Google Scholar] [CrossRef]
- Zhang, J.; Leng, Z.; Zhang, M.; Meng, J.; Wu, R. Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. J. Alloys Compd. 2011, 509, 1069–1078. [Google Scholar] [CrossRef]
- Zhu, S.; Abbott, T.B.; Nie, J.-F.; Ang, H.Q.; Qiu, D.; Nogita, K.; Easton, M.A. Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44. J. Magnes. Alloys 2021, 9, 1537–1545. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Cao, Y.; Zhao, Y. Current progress in strengthening, plastic deformation and thermal stability of Mg alloys. J. Alloys Compd. 2025, 1018, 179151. [Google Scholar] [CrossRef]
- Zhai, D.; Li, X.; Shen, J. Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase. Int. J. Miner. Metall. Mater. 2024, 31, 712–724. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Jiang, B.; Liu, W.; Yang, H.; Li, X.; Kang, Y.; Zhou, N.; Zheng, K.; Pan, F. Understanding the superior mechanical properties of Mg-3Al-Zn alloy sheets: Role of multi-type unique textures. Int. J. Miner. Metall. Mater. 2023, 30, 1104–1112. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Meng, J.; Wu, R.; Tang, D. Microstructures and mechanical properties of heat-resistant high-pressure die-cast Mg–4Al–xLa–0.3Mn (x = 1, 2, 4, 6) alloys. Mater. Sci. Eng. A 2010, 527, 2527–2537. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Leng, Z.; Zhang, M.; Meng, J.; Wu, R. Microstructures and mechanical properties of heat-resistant HPDC Mg–4Al-based alloys containing cheap misch metal. Mater. Sci. Eng. A 2011, 528, 2670–2677. [Google Scholar] [CrossRef]
- Singh, L.K.; Joseph, P.; Srinivasan, A.; Pillai, U.T.S.; Pai, B.C. Microstructure and mechanical properties of gadolinium-and misch metal-added Mg–Al alloy. Rare Met. 2022, 41, 3205–3213. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Drelich, J.W.; Goldman, J.; Sharif, S.; Ismail, A.F.; Razzaghi, M. Magnesium-based nanocomposites: A review from mechanical, creep and fatigue properties. J. Magnes. Alloys 2023, 11, 2655–2687. [Google Scholar] [CrossRef]
- Li, T.; Song, J.; Zhang, A.; You, G.; Yang, Y.; Jiang, B.; Qin, X.; Xu, C.; Pan, F. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components. J. Magnes. Alloys 2023, 11, 4166–4180. [Google Scholar] [CrossRef]
- Ewa, S.; Krzysztof, M.; Piotr, S.; Ema, N.-M. Review of magnesium alloys used in the manufacture of wheels for light vehicles. Adv. Sci. Technology. Res. J. 2023, 17, 245–253. [Google Scholar]
- Guan, S.; Wang, P.; Wang, T.; Wang, C.; Liu, G.; Zhu, Y. Microstructure and Mechanical Properties of High-Pressure Die-Casting Mg–Al–RE Alloys with Minor Ca Addition. Materials 2025, 18, 231. [Google Scholar] [CrossRef]
- Dong, X.; Feng, L.; Wang, S.; Nyberg, E.A.; Ji, S. A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. J. Magnes. Alloys 2021, 9, 90–101. [Google Scholar] [CrossRef]
- Lv, S.; Cheng, Y.; Deng, B.; Xu, T.; Qiu, X.; Yang, Q. A new high-pressure die casting Mg-Gd-Sm-Al alloy with high strength-ductility synergy. J. Rare Earths 2024, 42, 2239–2248. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Ishtiaq, M.; Kang, H.-H.; Chaudry, U.M.; Jun, T.-S. A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals 2025, 15, 128. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Q.D.; Ebrahimi, M.; Zhang, L.; Yin, D.D.; Jiang, H.Y.; Ding, W.J. Experimental Study on the Elastic–plastic Transitions of the Hetero-structured High Pressure Die Casting Mg–Al-RE Alloy. Exp. Mech. 2021, 61, 1143–1152. [Google Scholar] [CrossRef]
- Rhamdani, A.R.; Rhamdhani, M.A.; Brooks, G.; Pownceby, M.I.; Thaha, Y.N.; Abbott, T.B.; Grandfield, J.; Hartley, C. The production of rare earth based magnesium and aluminium alloys–a review. Miner. Process. Extr. Metall. Rev. 2025, 46, 44–67. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Wang, N.; Qin, Z.; Qin, S.; Guan, S. Creep properties and microstructure of a Mg-6Al-1Nd-1.5Gd alloy at temperatures above 150°C. Mater. Res. Express 2021, 8, 026522. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, D.; Bu, F.; Li, X.; Guan, K.; Yang, Q.; Liu, S.; Liu, X.; Meng, J. Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5 RE based alloy. Mater. Sci. Eng. A 2017, 693, 51–59. [Google Scholar] [CrossRef]
- Qin, P.-F.; Yang, Q.; He, Y.-Y.; Zhang, J.-H.; Xie, J.-S.; Hua, X.-R.; Guan, K.; Meng, J. Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy. Rare Met. 2021, 40, 2956–2963. [Google Scholar] [CrossRef]
- Yang, Q.; Bu, F.; Meng, F.; Qiu, X.; Zhang, D.; Zheng, T.; Liu, X.; Meng, J. The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg–4Al-based alloy. Mater. Sci. Eng. A 2015, 628, 319–326. [Google Scholar] [CrossRef]
- Lv, S.; Lü, X.; Meng, F.; Yang, Q.; Qiu, X.; Qin, P.; Duan, Q.; Meng, J. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La−0.3Mn alloy. Mater. Sci. Eng. A 2020, 773, 138725. [Google Scholar] [CrossRef]
- You, Y.; Yongbing, L.; Shuying, Q.; Yi, F. High cycle fatigue properties of die-cast magnesium alloy AZ91D with addition of different concentrations of cerium. J. Rare Earths 2006, 24, 591–595. [Google Scholar]
- Wu, G.; Chen, Y.; Ding, W. Current research, application and future prospect of magnesium alloys in aerospace industry. Manned Spacefl. 2016, 22, 281–292. [Google Scholar]
- Cui, X.-P.; Liu, H.-F.; Meng, J.; Zhang, D.-P. Microstructure and mechanical properties of die-cast AZ91D magnesium alloy by Pr additions. Trans. Nonferrous Met. Soc. China 2010, 20, s435–s438. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Wang, Z.; Le, Q.; Hu, W.; Bao, L.; Cui, J. Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater. Des. 2015, 88, 915–923. [Google Scholar] [CrossRef]
- Lv, S.; Xie, Z.; Yang, Q.; Meng, F.; Qiu, X. Microstructures and mechanical properties of a hot-extruded Mg−8Zn−6Al−1Gd (wt%) alloy. J. Alloys Compd. 2022, 904, 164040. [Google Scholar] [CrossRef]
- Kang, X.K.; Nie, K.B.; Deng, K.K.; Guo, Y.C. Effect of extrusion parameters on microstructure, texture and mechanical properties of Mg-1.38 Zn-0.17 Y-0.12 Ca (at.%) alloy. Mater. Charact. 2019, 151, 137–145. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, Y.; Zeng, Q.; Li, J. Coupling the semi-solid treatment and hot extrusion to strengthen a Mg-Zn-Gd alloy containing I-phase. Mater. Lett. 2021, 287, 129294. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, J.; Qin, P.; Liu, S.; Yang, Q.; Meng, J.; Wu, R.; Xie, J. Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg-Er-Y-Zn alloy containing nano-spaced stacking faults. Mater. Charact. 2019, 155, 109823. [Google Scholar] [CrossRef]
- Li, C.; Malik, A.; Nazeer, F.; Chaudry, U.M.; Long, J.; Wang, Y. A strong, ductile and in-plane tensile isotropic Mg-0.5Zn-0.5Y-0.15Si alloy. J. Mater. Res. Technol. 2022, 20, 3344–3354. [Google Scholar] [CrossRef]
- Meng, S.; Xiao, H.; Song, J.; Bi, G.; Wang, Q.; Wang, Z.; Yu, H.; Liu, H. Research progress and future prospects on high speed extrudable magnesium alloys: A review. J. Mater. Res. Technol. 2024, 30, 9007–9019. [Google Scholar] [CrossRef]
- Yang, Q.; Xie, Z.; Li, J.; Lv, S.; Zhang, W.; Wu, R.; Pan, H.; Li, R.; Qiu, X. ZK60 based alloys with high-strength and high-ductility: A review. Resour. Chem. Mater. 2023, 2, 151–166. [Google Scholar] [CrossRef]
- Ross, N.G.; Barnett, M.R.; Beer, A.G. Effect of alloying and extrusion temperature on the microstructure and mechanical properties of Mg–Zn and Mg–Zn–RE alloys. Mater. Sci. Eng. A 2014, 619, 238–246. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Xu, H.; Zhao, W.; Zhang, G.; Xiao, Y. Evolution of microstructure and mechanical properties of Mg-5.9Zn-1RE-0.6Zr alloy during extrusion process and aging process. Mater. Today Commun. 2023, 34, 105157. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Yamasaki, M.; Kawamura, Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater. Trans. 2006, 47, 959–965. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, E.; Cao, G.; Wang, L.; Lun, Y.; Feng, Y. Microstructure and mechanical properties of Mg-Nd-Zn-Zr alloy processed by integrated extrusion and equal channel angular pressing. J. Alloys Compd. 2017, 705, 118–125. [Google Scholar] [CrossRef]
- Kawamura, Y.; Yamasaki, M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans. 2007, 48, 2986–2992. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, Z.; Yan, Z.; Zhang, Z.; Xue, Y. An alternating ageing-annealing process for enhancing strength and ductility of a Mg-Gd-Y-Zn-Zr alloy. Mater. Sci. Eng. A 2021, 828, 142103. [Google Scholar] [CrossRef]
- Dong, B.; Che, X.; Zhang, Z.; Yu, J.; Meng, M. Comparison of the microstructure evolution and mechanical properties via MDF and ITMT methods. J. Alloys Compd. 2021, 881, 160561. [Google Scholar] [CrossRef]
- Yin, D.D.; Wang, Q.D.; Gao, Y.; Chen, C.J.; Zheng, J. Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5 Zr (wt.%) alloy. J. Alloys Compd. 2011, 509, 1696–1704. [Google Scholar] [CrossRef]
- Li, J.; He, Z.; Fu, P.; Wu, Y.; Peng, L.; Ding, W. Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy. Mater. Sci. Eng. A 2016, 651, 745–752. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, Z.; Yu, J.; Meng, M.; Xue, Y.; Zhang, H.; Zhao, X.; Ren, X.; Bai, S. Microstructure evolution and mechanical properties of industrial scale samples of Mg–Gd–Y–Zn–Zr alloy after repetitive upsetting-extrusion process. J. Mater. Res. Technol. 2022, 21, 2013–2027. [Google Scholar] [CrossRef]
- Sugamata, M.; Hanawa, S.; Kaneko, J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Mater. Sci. Eng. A 1997, 226, 861–866. [Google Scholar] [CrossRef]
- Tan, X.; Chee, K.H.W.; Chan, K.W.J.; Kwok, W.O.R.; Gupta, M. Effect of homogenization on enhancing the failure strain of high strength quaternary LPSO Mg–Y–Zn–Al alloy. Mater. Sci. Eng. A 2015, 644, 405–412. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Q.; Xu, T.; Zhang, J.; Wang, P.; Wang, C.; Sun, W.; Qiu, X. Influence of rare earth addition on microstructures and mechanical properties of high-pressure die casting Mg-8Zn-6Al alloy. J. Mater. Res. Technol. 2023, 26, 7912–7924. [Google Scholar] [CrossRef]
- Ebenezer, D.; Rao, S.R.K. Impression creep behavior of an Mg–Zn–RE alloy at elevated temperatures. Metall. Mater. Trans. A 2022, 53, 823–836. [Google Scholar] [CrossRef]
- Aljarrah, M.; Alnahas, J.; Alhartomi, M. Thermodynamic modeling and mechanical properties of Mg-Zn-{Y, Ce} alloys. Crystals 2021, 11, 1592. [Google Scholar] [CrossRef]
- Li, Y.; Guo, F.; Wang, Y.; Cai, H.; Liu, L. Quantitative analysis of rare earth elements in Mg–Zn–RE (Ce, Y, Gd)–Zr alloy. Mater. Res. Express 2022, 9, 046518. [Google Scholar] [CrossRef]
- Mansoor, A.; Zulfiqar, M.; Ishtiaq, M.; Hussain, M.A.; Younes, M.H.; Inam, A.; Afifi, M.A.; Khan, M.A.; Jabar, B. Tuning the microstructure and strength of Mg–RE alloys through the rare-earth elements. J. Mater. Sci. 2025, 60, 4808–4819. [Google Scholar] [CrossRef]
- Jinghuai, Z.; Shujuan, L.; Ruizhi, W.; Legan, H.; Milin, Z. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar]
- Ma, R.; Lv, S.; Xie, Z.; Yang, Q.; Yan, Z.; Meng, F.; Qiu, X. Achieving high strength-ductility in a wrought Mg–9Gd–3Y–0.5 Zr alloy by modifying with minor La addition. J. Alloys Compd. 2021, 884, 161062. [Google Scholar] [CrossRef]
- Yamada, K.; Hoshikawa, H.; Maki, S.; Ozaki, T.; Kuroki, Y.; Kamado, S.; Kojima, Y. Enhanced age-hardening and formation of plate precipitates in Mg–Gd–Ag alloys. Scr. Mater. 2009, 61, 636–639. [Google Scholar] [CrossRef]
- Ozaki, T.; Kuroki, Y.; Yamada, K.; Hoshikawa, H.; Kamado, S.; Kojima, Y. Mechanical properties of newly developed age hardenable Mg-3.2 mol% Gd-0.5 mol% Zn casting alloy. Mater. Trans. 2008, 49, 2185–2189. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Peng, L.; Fu, P.; Huang, F.; Ding, W. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg–15.6 Gd–1.8 Ag–0.4 Zr alloy. J. Alloys Compd. 2014, 615, 703–711. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, Y.; Wu, Y.; Chen, Y.; Sun, M.; Chen, J.; Peng, L. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys. Mater. Sci. Eng. A 2019, 740, 262–273. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.; Zhang, Y.; Cheng, X.; Peng, L.; Yang, K.; Chen, Q. Microstructure evolution difference in Mg96. 5Gd2. 5Zn1 alloys extruded from as-cast and solution-treated states. J. Mater. Process. Technol. 2020, 282, 116666. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, D.; Zhang, X.; Xu, X. Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg–Zn–Y–Mn alloys. Mater. Sci. Eng. A 2014, 593, 70–78. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, A.; Xu, B.; Jiang, J.; Sun, J. Development of a high-strength Mg–11Gd–2Ag (wt%) alloy sheet with extra-low anisotropy. Mater. Sci. Eng. A 2021, 811, 141084. [Google Scholar] [CrossRef]
- Lin, J.; Fu, P.; Wang, Y.; Liu, H.; Zheng, Y.; Peng, L.; Ding, W. Effect of La addition on microstructure, mechanical behavior, strengthening and toughening mechanisms of cast Mg-Gd-Zn alloy. Mater. Sci. Eng. A 2023, 866, 144688. [Google Scholar] [CrossRef]
- Wu, X.; Pan, F.; Cheng, R.; Luo, S. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5 Zr magnesium alloy. Mater. Sci. Eng. A 2018, 726, 64–68. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Peng, X.; Gao, S.; Hu, H.; Zeng, L.; Pan, F. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy sheets processed by large-strain high-efficiency rolling. Mater. Sci. Eng. A 2019, 748, 100–107. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Zhao, Z.; He, S. Microstructure and super high strength of cast Mg-8.5 Gd-2.3 Y-1.8 Ag-0.4 Zr alloy. Mater. Sci. Eng. A 2010, 528, 323–328. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Wang, J.; Huang, S.; Gao, S.; Peng, X.; Hu, H.; Pan, F. Ageing behavior and mechanisms of strengthening and toughening of ultrahigh-strength Mg-Gd-Y-Zn-Mn alloy. Mater. Sci. Eng. A 2019, 758, 96–98. [Google Scholar] [CrossRef]
- Tong, L.B.; Chu, J.H.; Sun, W.T.; Xu, C.; Zou, D.N.; Wang, K.S.; Kamado, S.; Zheng, M.Y. Achieving an ultra-high strength and moderate ductility in Mg–Gd–Y–Zn–Zr alloy via a decreased-temperature multi-directional forging. Mater. Charact. 2021, 171, 110804. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, Z.H.; Ma, H.; Zhang, H.; Zhang, Z.M.; Xu, C.J.; Zhou, N.; Kuang, M.; Huang, J.C. High strength Mg-1.4 Gd-1.2 Y-0.4 Zn sheet and its strengthening mechanisms. Mater. Sci. Eng. A 2019, 747, 17–26. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C.; Nakata, T.; Kamado, S. Effect of extrusion ratio and temperature on microstructures and tensile properties of extruded Mg-Gd-Y-Mn-Sc alloy. Mater. Sci. Eng. A 2021, 800, 140330. [Google Scholar] [CrossRef]
- Li, B.; Guan, K.; Yang, Q.; Niu, X.; Zhang, D.; Lv, S.; Meng, F.; Huang, Y.; Hort, N.; Meng, J. Microstructures and mechanical properties of a hot-extruded Mg−8Gd−3Yb−1.2Zn−0.5Zr (wt%) alloy. J. Alloys Compd. 2019, 776, 666–678. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Yu, S.; Zhang, J.; Lu, X.; Shu, X.; Su, Z. Effects of heat treatment on mechanical properties of an extruded Mg-4.3 Gd-3.2 Y-1.2 Zn-0.5 Zr alloy and establishment of its Hall–Petch relation. J. Magnes. Alloys 2022, 10, 501–512. [Google Scholar] [CrossRef]
- Itoi, T.; Takahashi, K.; Moriyama, H.; Hirohashi, M. A high-strength Mg–Ni–Y alloy sheet with a long-period ordered phase prepared by hot-rolling. Scr. Mater. 2008, 59, 1155–1158. [Google Scholar] [CrossRef]
- Liu, K.; Rokhlin, L.L.; Elkin, F.M.; Tang, D.; Meng, J. Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg–7Y–4Gd–1.5 Zn–0.4 Zr alloy. Mater. Sci. Eng. A 2010, 527, 828–834. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Ding, W. Effects of heat treatments on Microstructure and mechanical properties of Mg–4Y–4Sm–0.5 Zr alloy. Mater. Sci. Eng. A 2007, 448, 165–170. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, Y.; Zhang, J.; Liu, S.; Yang, Q.; Liu, Z.; Li, R.; Meng, J.; Wu, R. Development of extruded Mg-6Er-3Y-1.5 Zn-0.4 Mn (wt.%) alloy with high strength at elevated temperature. J. Mater. Sci. Technol. 2019, 35, 2365–2374. [Google Scholar] [CrossRef]
- Su, Z.; Liu, C.; Wan, Y. Microstructures and mechanical properties of high performance Mg–4Y–2.4 Nd–0.2 Zn–0.4 Zr alloy. Mater. Des. 2013, 45, 466–472. [Google Scholar] [CrossRef]
- Li, R.G.; Dai, Y.Q.; Song, P.F.; Zhang, J.H.; Zhang, H.; Guo, N.; Fu, G.Y.; Lu, L.W. Simultaneous enhancement of strength and ductility by aging treatment in fine-grained Mg-13Gd alloy. Mater. Sci. Eng. A 2021, 818, 141441. [Google Scholar] [CrossRef]
- Li, R.G.; Li, H.R.; Pan, H.C.; Xie, D.S.; Zhang, J.H.; Fang, D.Q.; Dai, Y.Q.; Zhao, D.Y.; Zhang, H. Achieving exceptionally high strength in binary Mg-13Gd alloy by strong texture and substantial precipitates. Scr. Mater. 2021, 193, 142–146. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Li, R.; Liu, B.; Li, S.; Sha, S.; Zhang, Y.; Xu, M.; Tang, Y. Microstructure and Mechanical Property of Mg-13Gd-0.2 Ni Alloy Processed by Extrusion and Aging. Acta Metall. Sin. 2024, 37, 1367–1376. [Google Scholar] [CrossRef]
- Meier, J.M.; Miao, J.; Liang, S.-M.; Zhu, J.; Zhang, C.; Caris, J.; Luo, A.A. Phase equilibria and microstructure investigation of Mg-Gd-Y-Zn alloy system. J. Magnes. Alloys 2022, 10, 689–696. [Google Scholar] [CrossRef]
- Jin, X.; Xu, W.; Shan, D.; Guo, B.; Jin, B.C. Mechanism of high-strength and ductility of Mg-RE alloy fabricated by low-temperature extrusion and aging treatment. Mater. Des. 2021, 199, 109384. [Google Scholar] [CrossRef]
- Li, R.G.; Song, P.F.; Wu, G.L.; Liu, B.S.; Pan, H.C.; Li, J.R.; Zhang, H. Tensile yielding plateau in fine-grained Mg-15Gd binary alloy. Mater. Lett. 2022, 324, 132757. [Google Scholar] [CrossRef]
- Wu, G.; Tong, X.; Wang, C.; Jiang, R.; Ding, W. Recent advances on grain refinement of magnesium rare-earth alloys during the whole casting processes: A review. J. Magnes. Alloys 2023, 11, 3463–3483. [Google Scholar] [CrossRef]
- Li, R.G.; Zhou, S.Q.; Zhang, H.; Wu, R.Z.; Wu, D.; Li, J.R.; Liu, B.S.; Li, S.S.; Li, X.; Wang, B.J. Rapid drop in ductility of the bimodal-structured Mg–15Gd binary alloy during early aging. J. Magnes. Alloys 2024, 12, 3772–3779. [Google Scholar] [CrossRef]
- Ding, Z.; Hou, H. Microstructure evolution and mechanical properties of Mg–10Gd–3Y–xZn–0.6 Zr alloys. J. Mater. Res. 2018, 33, 1797–1805. [Google Scholar] [CrossRef]
- Sivashanmugam, N.; Harikrishna, K.L. Influence of rare earth elements in magnesium alloy-a mini review. Materials Science Forum. Trans. Technol. Publ. Ltd. 2020, 979, 162–166. [Google Scholar]
- Li, R.G.; Zhu, J.X.; Liu, B.S.; Zhang, H.; Li, S.S.; Wu, D.; Sha, S.; Guo, S.G. Exploring the effect of bimodal microstructure on the mechanical properties of Mg–15Er binary alloy by regulating the extrusion ratio. J. Mater. Res. Technol. 2024, 28, 2379–2387. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, J.; Zhang, J.; Yang, X.-S.; Wu, R. Towards designing high mechanical performance low-alloyed wrought magnesium alloys via grain boundary segregation strategy: A review. J. Magnes. Alloys 2024, 12, 1774–1791. [Google Scholar] [CrossRef]
- Kaya, A.A. A review on developments in magnesium alloys. Front. Mater. 2020, 7, 198. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, H.; Li, J.; Xie, D.; Zhang, D.; Che, C.; Meng, J.; Qin, G. Fabrication of exceptionally high-strength Mg-4Sm-0.6 Zn-0.4 Zr alloy via low-temperature extrusion. Mater. Sci. Eng. A 2022, 833, 142565. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Z.; Liu, S.; Zhang, J.; Wang, J.; He, Y.; Lu, L.; Jiao, Y.; Wu, R. Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion. Int. J. Miner. Metall. Mater. 2023, 30, 82–91. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Xiao, T.; Sun, B.; He, Y.; Liu, S.; Liu, L.; Jiao, Y.; Wu, R. Regulating microstructure and improving precipitation hardening response of fine-grained Mg-RE-Ag hot-extruded alloy by extreme short-time heat treatment. Mater. Sci. Eng. A 2024, 892, 146059. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Liu, S.; Zhang, Z.; Zhao, T.; Zhang, X.; Wu, R. Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. Nanomaterials 2023, 13, 1219. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Sun, X.; Li, J.; Xie, D.; Yang, C.; Pan, H.; Qin, G. Role of Mn Addition in Tuning the Microstructure and Mechanical Properties of Mg-Al-Ca Dilute Alloy. J. Mater. Eng. Perform. 2023, 32, 5109–5115. [Google Scholar] [CrossRef]
- Dong, X.; Feng, L.; Wang, S.; Ji, G.; Addad, A.; Yang, H.; Nyberg, E.A.; Ji, S. On the exceptional creep resistance in a die-cast Gd-containing Mg alloy with Al addition. Acta Mater. 2022, 232, 117957. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Dong, B.-X.; Wang, C.-G.; Yan, B.-C.; Yang, H.-Y.; Qiu, F.; Shu, S.-L.; Jiang, Q.-C. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites. J. Mater. Res. Technol. 2024, 30, 3152–3177. [Google Scholar] [CrossRef]
- Zhou, S.; Tang, A.; Liu, T.; Huang, Y.; Peng, P.; Zhang, J.; Hort, N.; Willumeit-Römer, R.; Pan, F. Development of high strength-ductility Mg-Er extruded alloys by micro-alloying with Mn. J. Alloys Compd. 2023, 947, 169669. [Google Scholar] [CrossRef]
- Chen, H.; Gong, Z. Oxidation behaviour of molten ZK60 and ME20 magnesium alloys with magnesium in 1,1,1,2-tetrafluoroethane/air atmospheres. Trans. Nonferrous Met. Soc. China 2012, 22, 2898–2905. [Google Scholar] [CrossRef]
- Choi, B.H.; You, B.S.; Park, W.W.; Huang, Y.B.; Park, I.M. Effect of Ca Addition on the Oxidation Resistance of AZ91 Magnesium Alloys at Elevated Temperatures. Met. Mater. Int. 2003, 9, 395–398. [Google Scholar] [CrossRef]
- Li, R.G.; Zhao, D.Y.; Zhang, J.H.; Li, H.R.; Dai, Y.Q.; Fang, D.Q. Room temperature yielding phenomenon in extruded or/and aged Mg-14Gd-2Ag-0.5Zr alloy with fine-grained microstructure. Mater. Sci. Eng. A 2020, 787, 139551. [Google Scholar] [CrossRef]
- Fan, R.; Wang, L.; Zhao, S.; Wang, L.; Guo, E. Strengthening of Mg alloy with multiple RE elements with Ag and Zn doping via heat treatment. Materials 2023, 16, 4155. [Google Scholar] [CrossRef]
- Cai, H.; Zhao, Z.; Wang, Q.; Zhang, N.; Lei, C. Study on solution and aging heat treatment of a super high strength cast Mg-7.8Gd-2.7Y-2.0Ag-0.4Zr alloy. Mater. Sci. Eng. A 2022, 849, 143523. [Google Scholar] [CrossRef]
- Wu, G.; Wang, C.; Sun, M.; Ding, W. Recent developments and applications on high-performance cast magnesium rare-earth alloys. J. Magnes. Alloys 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. J. Magnes. Alloys 2023, 11, 3609–3619. [Google Scholar] [CrossRef]
- Manjhi, S.K.; Sekar, P.; Bontha, S.; Balan, A.S.S. Additive manufacturing of magnesium alloys: Characterization and post-processing. Int. J. Lightweight Mater. Manuf. 2024, 7, 184–213. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, F.; Barber, G.C.; Zou, Q.; Wang, J.; Guo, S.; Yuan, Y.; Jiang, Q. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 2022, 490, 204206. [Google Scholar] [CrossRef]
- Liu, T.-S.; Qiu, F.; Yang, H.-Y.; Tan, C.-L.; Dong, B.-X.; Xie, J.-F.; Shu, S.-L.; Jiang, Q.-C.; Zhang, L.-C. Versatility of trace nano-TiC–TiB2 in collaborative control of solidification-rolling-welding microstructural evolution in Al–Mg–Si alloy for enhanced properties. Mater. Sci. Eng. A 2022, 851, 143661. [Google Scholar] [CrossRef]
- Jin, Z.-Z.; Zha, M.; Wang, S.-Q.; Wang, S.-C.; Wang, C.; Jia, H.-L.; Wang, H.-Y. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloys 2022, 10, 1191–1206. [Google Scholar] [CrossRef]
- Qian, X.; Yang, H.; Hu, C.; Zeng, Y.; Huang, Y.; Shang, X.; Wan, Y.; Jiang, B.; Feng, Q. Effect of potential difference between nano-Al2O3 whisker and Mg matrix on the dispersion of Mg composites. Int. J. Miner. Metall. Mater. 2023, 30, 104–111. [Google Scholar] [CrossRef]
- Li, R.G.; Yan, Y.; Pan, H.C.; Zhang, H.; Li, J.R.; Qin, G.W.; Liu, B.S. Achieving a high-strength binary Mg-15Gd alloy by nano substructure with Gd segregation and nano clusters. Mater. Res. Lett. 2022, 10, 682–689. [Google Scholar] [CrossRef]
- Ma, C.; Wang, D.; Liu, J.; Peng, N.; Shang, W.; Wen, Y. Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy. Int. J. Miner. Metall. Mater. 2023, 30, 959–969. [Google Scholar] [CrossRef]
- Gui, Y.; Li, Q.; Zhu, K.; Xue, Y. A combined machine learning and EBSD approach for the prediction of {10-12} twin nucleation in an Mg-RE alloy. Mater. Today Commun. 2021, 27, 102282. [Google Scholar] [CrossRef]
- Guan, B.; Chen, C.; Xin, Y.; Xu, J.; Feng, B.; Huang, X.; Liu, Q. Predicting the Hall-Petch slope of magnesium alloys by machine learning. J. Magnes. Alloys 2023, 12, 4436–4442. [Google Scholar] [CrossRef]
- Xia, X.; Nie, J.F.; Davies, C.H.J.; Tang, W.N.; Xu, S.W.; Birbilis, N. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys. Mater. Des. 2016, 90, 1034–1043. [Google Scholar] [CrossRef]
- Pan, G.; Wang, F.; Shang, C.; Wu, H.; Wu, G.; Gao, J.; Wang, S.; Gao, Z.; Zhou, X.; Mao, X. Advances in machine learning and artificial intelligence assisted material design of steels. Int. J. Miner. Metall. Mater. 2023, 30, 1003–1024. [Google Scholar] [CrossRef]
- He, X.; Liu, J.; Yang, C.; Jiang, G. Predicting thermodynamic stability of magnesium alloys in machine learning. Comput. Mater. Sci. 2023, 223, 112111. [Google Scholar] [CrossRef]
Mg Alloys | Operating Temperature | Strengthening Phases | Melting Point of Precipitation Phase | |
---|---|---|---|---|
Mg-Al-RE | Mg-Al-La | <200 °C | Al11La3 | 1240 °C |
Mg-Al-Ce | Al11Ce3 | 1235 °C | ||
Al2Ce | 1480 °C | |||
Mg-Al-Nd | Al11Nd3 | 1235 °C | ||
Al2Nd | 1460 °C | |||
Mg-Al-Y | Al2Y | 1485 °C | ||
Mg-Zn-RE | Mg-Zn-Y | <175 °C | Mg3Zn6Y | 475 °C |
Mg12ZnY | 550 °C | |||
Mg3Zn3Y2 | -- | |||
Mg-RE | Mg-La | <250 °C | Mg17La2 | -- |
Mg-Ce | Mg12Ce | 610 °C | ||
Mg-Nd | Mg12Nd | 560 °C | ||
Mg-Sm | Mg41Sm5 | -- | ||
Mg-Gd | <300 °C | Mg5Gd | 640 °C | |
Mg-Y | Mg24Y5 | 620 °C |
Alloys (wt.%) | Process | UTS (MPa) | YS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Mg-1.2Al-0.2Ce-0.4Ca | Extrusion | 358 | 350 | 12.1 | [48] |
Mg-2Al-3Y-4Nd | Heat treatment | 285 | 182 | 7.4 | [49] |
Mg-2.5Al-4La-0.5Mn | HPDC * | 253 | 149 | 11.5 | [50] |
Mg-2.8Al-3.8La-0.4Nd | HPDC | 240 | 137 | 8.8 | [49] |
Mg-4Al-3La-1Ca-0.3Mn | HPDC | 274 | 220 | 6.3 | [72] |
Mg-4Al-3La-2Sm-0.3Mn | HPDC | 266 | 170 | 11.2 | [73] |
Mg-4Al-3La-2Gd-0.3Mn | HPDC | 284 | 181 | 14 | [74] |
Mg-4Al-1Ce-0.3Mn | HPDC | 232 | 146 | 9 | [53] |
Mg-4Al-2Ce-0.3Mn | HPDC | 247 | 148 | 12 | |
Mg-4Al-4Ce-0.3Mn | HPDC | 250 | 157 | 11 | |
Mg-4Al-6Ce-0.3Mn | HPDC | 254 | 161 | 10 | |
Mg-4Al-1La-0.3Mn | HPDC | 236 | 133 | 12 | [58] |
Mg-4Al-2La-0.3Mn | HPDC | 245 | 140 | 13 | |
Mg-4Al-4La-0.3Mn | HPDC | 265 | 155 | 12 | |
Mg-4Al-6La-0.3Mn | HPDC | 257 | 171 | 7 | |
Mg-4Al-1Ce/La-0.3Mn | HPDC | 233 | 128 | 11 | [59] |
Mg-4Al-2Ce/La-0.3Mn | HPDC | 240 | 137 | 11 | |
Mg-4Al-4Ce/La-0.3Mn | HPDC | 270 | 160 | 13 | |
Mg-4Al-6Ce/La-0.3Mn | HPDC | 261 | 173 | 8 | |
Mg-4Al-2RE-2Ca-0.3Mn | HPDC | 234 | 202 | 4 | [51] |
Mg-4Al-1.5Ce-1.5La-1Si | HPDC | 263 | 167 | 12 | [52] |
AE44 | HPDC | 247 | 147 | 11 | [53] |
Mg-4Al-4RE-0.3Mn | HPDC | 284 | 192 | 11.4 | [54] |
AZ91-0.5RE-0.2Sr | HPDC | 263 | 165 | 7.6 | [60] |
AZ91-1.0Ce | HPDC | 248 | 158 | 6.8 | [75] |
AZ91-1.0Nd | HPDC | 258 | 164 | 5.6 | [76] |
AZ91-0.5Y | HPDC | 270 | 162 | 10 | [37] |
AZ91-0.8Pr | HPDC | 228 | 137 | 6.8 | [77] |
AZ91-1.5Ca-1.0Y | HPDC | 241 | 183 | 3.2 | [38] |
Alloys (wt.%) | Process | UTS (MPa) | YS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Mg-9Zn-9Y-0.6Zr | Extruded | 351 | 245 | 11.0 | [78] |
Mg-8Zn-6Al-1Gd | Extrusion | 360 | 273 | 13.5 | [79] |
Mg-5Zn-12Y-0.6Zr | Heat treatment | 429 | 351 | 2 | [78] |
Mg-4.2Zn-5.7Y | Extruded | 420 | 390 | 5 | [88] |
Mg-3.6Zn-0.6Y-0.2Ca | Extrusion | 357 | 317 | 6.4 | [80] |
Mg-3.5Zn-9.5Y-1Mn | Extruded | 421 | 333 | 5.8 | [89] |
Mg-3Zn-6Y-1Al | HPDC * | 281 | 175 | 9.5 | [18] |
Mg-2.5Zn-6.8Y | Extruded | 410 | 350 | 6 | [90] |
Mg-2.2Zn-9.5Gd-4Y-0.5Zr | Extrusion | 494 | 425 | 11.2 | [91] |
Mg-2Zn-13Gd-4Y-0.5Zr | Extrusion | 356 | 332 | 8 | [92] |
Mg-2Zn-11Y-5Gd-0.5Zr | Heat treatment | 307 | 240 | 1.4 | [93] |
Mg-2Zn-14Gd-0.5Zr | Heat treatment | 404 | 292 | 5.3 | [94] |
Mg-2Zn-9Gd-3Y-0.4Zr | Extrusion | 357 | 242 | 9 | [95] |
Mg-2Zn-10Y | Extruded | 520 | - | - | [96] |
Mg-2Zn-4Y-0.5Al | Extruded | 416 | 376 | 11 | [97] |
Mg-1.5Zn-0.25Gd | Extrusion | 444 | 408 | 12.5 | [81] |
Mg-1.2Zn-0.6Er-0.6Y-0.2Mn | Extrusion | 351 | 320 | 10.0 | [82] |
Mg-0.5Zn-0.5Y-0.15Si | Extrusion | 348 | 248 | 19 | [83] |
Alloys (wt.%) | Process | UTS (MPa) | YS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Mg-18Gd-2Ag-0.3Zr | Heat treatment | 414 | 293 | 2.2 | [105] |
Mg-17.4Gd-1.1Zn-0.6Zr | Heat treatment | 410 | 313 | 1.9 | [106] |
Mg-15.6Gd-1.8Ag-0.4Zr | Heat treatment | 423 | 328 | 4.9 | [107] |
Mg-15Gd-1Zn-0.4Zr | Extrusion | 423 | 359 | 10 | [108] |
Mg-14.5Gd-2.3Y-1.1Zn-0.3Mn | Extrusion | 520 | 448 | 3.5 | [28] |
Mg-14Gd-2Er-0.4Zr | Extrusion | 490 | 481 | 3.2 | [29] |
Mg-12.6Gd-1.3Y-0.9Zn-0.5Mn | Extrusion | 564 | 543 | 1.2 | [109] |
Mg-11.5Gd-4.5Y-1.5Zn-0.4Zr | Extrusion | 453 | 387 | 8.3 | [110] |
Mg-11Gd-2Ag | Extrusion | 393 | 435 | 5.2 | [111] |
Mg-10Gd-3Y-1.0Zn-0.5Zr | Extrusion | 347 | 231 | 11 | [23] |
Mg-10Gd-3Y-0.8Al | Heat treatment | 301 | 213 | 12.1 | [24] |
Mg-10Gd-2Y-1Zn-0.5Zr | Heat treatment | 351 | 252 | 10.2 | [110] |
Mg-10Gd-0.4La-0.1Zn-0.4Zr | Heat treatment | 397 | 247 | 5.8 | [112] |
Mg-10Gd-1Zn-0.5Zr | Heat treatment | 303 | 205 | 6.6 | [113] |
Mg-9.5Gd-3.8Y-0.6Zr | Extrusion | 560 | 518 | 4.8 | [32] |
Mg-9.2Gd-3.3Y-1.2Zn-0.9Mn | Extrusion | 525 | 420 | 6.3 | [33] |
Mg-9Gd-4Y-0.5Zr | Heat treatment | 370 | 277 | 4.5 | [103] |
Mg-9Gd-3Y-2Zn-0.4Zr | Extrusion | 357 | 242 | 9 | [97] |
Mg-9Gd-3Y-0.5La-0.5Zr | Extrusion | 496 | 480 | 5.8 | [104] |
Mg-9Gd-1Yb-0.5Zn-0.2Zr | Heat treatment | 283 | 229 | 1.2 | [26] |
Mg-8.8Gd-3.4Y-1Zn-0.8Mn | Extrusion | 415 | 362 | 8.3 | [114] |
Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr | Heat treatment | 403 | 268 | 4.9 | [115] |
Mg-8.3Gd-4.2Y-1.4Zn-1.1Mn | Extrusion | 388 | 282 | 16.4 | [116] |
Mg-8.3Gd-1.1Dy-0.4Zr | Heat treatment | 355 | 261 | 3.8 | [27] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | Extrusion | 434 | 417 | 12.9 | [117] |
Mg-8.1Gd-4Y-1Zn | Extrusion | 373 | 303 | 11.0 | [118] |
Mg-8Gd-4Y-1Mn-0.4Sc | Extrusion | 425 | 352 | 10.6 | [119] |
Mg-8Gd-3Yb-1.2Zn-0.5Zr | Extrusion | 425 | 413 | 5.5 | [120] |
Mg-7Gd-3Nd-0.4Zr | Heat treatment | 302 | 201 | 4.3 | [112] |
Mg-6Gd-3Y-0.5Zr | Heat treatment | 248 | 173 | 17.5 | [120] |
Mg-6Gd-2Y-1Nd-1.5Ag-0.4Zn-0.4Zr | Heat treatment | 220 | 148 | 5.4 | [35] |
Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr | Heat treatment | 351 | 303 | 20 | [121] |
Mg-19Y-6.5Ni | Heat treatment | 526 | 460 | 8 | [122] |
Mg-7Y-4Gd-1.5Zn-0.4Zr | Heat treatment | 418 | 320 | 6.2 | [123] |
Mg-4Y-4Sm-0.5Zr | Heat treatment | 348 | 217 | 6.9 | [124] |
Mg-6Er-3Y-1.5Zn-0.4 Mn | Extrusion | 354 | 316 | 8.1 | [125] |
Alloys (wt.%) | Process | UTS (MPa) | YS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Mg-3Nd-4.5Gd-0.2Zn-0.5Zr | Heat treatment | 343 | 200 | 5.4 | [18] |
Mg-3Nd-3Gd-0.5Zn-0.5Zr | Heat treatment | 301 | 179 | 5.3 | [19] |
Mg-3Nd-2.6Gd-0.2Zn-0.5Zr | Heat treatment | 303 | 220 | 4.1 | [20] |
Mg-3Nd-1Gd-0.3Zn-0.4Zr | Heat treatment | 230 | 173 | 6.5 | [4] |
Mg-3Nd-0.4Zn-0.4Zr | Heat treatment | 198 | 116 | 14.0 | [21] |
Mg-3Nd-0.2Zn-0.4Zr | Heat treatment | 296 | 266 | 4.9 | [22] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | Heat treatment | 339 | 268 | 4 | [140] |
Mg-3.5Y-2Nd-1.3Gd-0.4Zr | Heat treatment | 345 | 196 | 7 | [34] |
Mg-2Y-0.5Zn-0.5Ni | Extrusion | 389 | 336 | 12.6 | [30] |
Mg-4Sm-1Nd-0.6Zn-0.4Zr | Heat treatment | 190 | 138 | 5.5 | [112] |
Mg-4Sm-0.6Zn-0.4Zr | Heat treatment | 462 | 458 | 4.8 | [140] |
Mg-3.5Sm-2Yb-0.6Zn-0.4Zr | Extrusion | 451 | 449 | 4.9 | [120] |
Mg-3.5Sm-0.6Zn-0.5Zr | Extrusion | 381 | 363 | 9.0 | [31] |
Alloys (wt.%) | Process | UTS (MPa) | YS (MPa) | EL (%) | Ref. |
---|---|---|---|---|---|
Mg-0.2Ca-3.6Zn-0.6Y | Extrusion | 357 | 317 | 6.4 | [80] |
Mg-0.4Ca-1.2Al-0.2Ce | Extrusion | 358 | 350 | 12.1 | [48] |
Mg-0.8Ca-0.4Mn-0.2Ce | Extrusion | 430 | 428 | 2 | [144] |
Mg-1Ca-4Al-3La-0.3Mn | HPDC | 274 | 220 | 6.3 | [68] |
Mg-1Ca-10Gd-1Al | Heat treatment | 211 | 163 | 11.6 | [145] |
AZ91-1.5Ca-1.0Y | HPDC | 241 | 183 | 3.2 | [38] |
Mg-2Ca -4Al-2RE-0.3Mn | HPDC | 234 | 202 | 4 | [51] |
Mg-0.15Si-0.5Zn-0.5Y | Extrusion | 348 | 248 | 19 | [83] |
Mg-1Si-4Al-1.5Ce-1.5La | HPDC | 263 | 167 | 12 | [52] |
Mg-0.3Mn-2Er | Extrusion | 201 | 134 | 35.3 | [146] |
Mg-0.9Mn-9.2Gd-3.3Y-1.2Zn | Extrusion | 525 | 420 | 6.3 | [33] |
Mg-1Mn-8Gd-4Y-0.4Sc | Extrusion | 425 | 352 | 10.6 | [119] |
Mg-1.1Mn-8.3Gd-4.2Y-1.4Zn | Extrusion | 388 | 282 | 16.4 | [116] |
Mg-1.5Ag-6Gd-2Y-1Nd-0.4Zn-0.4Zr | Heat treatment | 220 | 148 | 5.4 | [35] |
Mg-1.8Ag-15.6Gd-0.4Zr | Heat treatment | 423 | 328 | 4.9 | [107] |
Mg-1.8Ag-8.5Gd-2.3Y-0.4Zr | Heat treatment | 403 | 268 | 4.9 | [115] |
Mg-2Ag-18Gd-0.3Zr | Heat treatment | 414 | 293 | 2.2 | [105] |
Mg-2Ag-11Gd | Extrusion | 393 | 435 | 5.2 | [111] |
Mg-2.0Ag-7.8Gd-2.7Y-0.4Zr | Heat treatment | 410.7 | 273.1 | 4.85 | [147] |
AZ91-0.2Sr-0.5RE | HPDC | 263 | 165 | 7.6 | [60] |
Mg-0.5Ni-2Y-0.5Zn | Extrusion | 389 | 336 | 12.6 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Wang, C.; Dong, B.-X.; Yang, H.-Y.; Zhan, L.; Luo, D.; Qiu, F.; Jiang, Q.-C. Rare Earth Elements in Heat-Resistant Magnesium Alloys: Mechanisms, Performance, and Design Strategies. Materials 2025, 18, 4090. https://doi.org/10.3390/ma18174090
Tian Z, Wang C, Dong B-X, Yang H-Y, Zhan L, Luo D, Qiu F, Jiang Q-C. Rare Earth Elements in Heat-Resistant Magnesium Alloys: Mechanisms, Performance, and Design Strategies. Materials. 2025; 18(17):4090. https://doi.org/10.3390/ma18174090
Chicago/Turabian StyleTian, Zheng, Chong Wang, Bai-Xin Dong, Hong-Yu Yang, Lei Zhan, Dan Luo, Feng Qiu, and Qi-Chuan Jiang. 2025. "Rare Earth Elements in Heat-Resistant Magnesium Alloys: Mechanisms, Performance, and Design Strategies" Materials 18, no. 17: 4090. https://doi.org/10.3390/ma18174090
APA StyleTian, Z., Wang, C., Dong, B.-X., Yang, H.-Y., Zhan, L., Luo, D., Qiu, F., & Jiang, Q.-C. (2025). Rare Earth Elements in Heat-Resistant Magnesium Alloys: Mechanisms, Performance, and Design Strategies. Materials, 18(17), 4090. https://doi.org/10.3390/ma18174090