A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model
Abstract
1. Introduction
2. Energy-Critical Plane Model
2.1. Energy-Critical Plane
2.2. Coordinate Transformation Principle
2.3. Determination of Energy-Critical Plane
3. Damage Parameters Analysis of Multiaxial Fatigue Model
3.1. Existing Multiaxial Fatigue Model
3.1.1. SWT Model
3.1.2. Equivalent Strain Model
3.1.3. FS Model
3.2. Proposed Multiaxial Fatigue Life Prediction Model
3.2.1. Numerical Estimation of the Additional Strengthening Coefficient
3.2.2. Proposed Model Construction
4. Finite Element Analysis of Metallic Materials
4.1. Material and Geometric Parameters
4.2. Stress and Strain Analysis
5. Model Validation and Comparison
5.1. Fatigue Life Prediction
5.2. Error Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
b | Fatigue strength exponent |
c | Fatigue ductility exponent |
E | Young modulus |
G | Shear modulus |
Shear fatigue strength exponent | |
Shear fatigue ductility exponent | |
Cyclic strain hardening exponent | |
Material constant | |
Unit complex root | |
Number of cycles to failure | |
Estimated lifespan | |
Tested lifespan | |
Maximum shear strain | |
Shear fatigue ductility coefficient | |
Shear fatigue strength coefficient | |
Normal strain amplitude | |
Equivalent strain amplitude | |
Fatigue ductility coefficient | |
Normal strain | |
Tensile strength | |
Fatigue strength coefficient | |
Equivalent stress under in-phase loading. | |
Equivalent stress corresponding to circular loading path | |
Maximum normal stress | |
Yield strength | |
Poisson’s ratio | |
Phase angle between tensional strain and torsional strain |
References
- Li, B.; Liu, J.H.; Wang, X.L. A new multiaxial fatigue life prediction model considering additional hardening effect. Adv. Mech. Eng. 2020, 12, 1687814020935331. [Google Scholar]
- Rege, K.; Pavlou, D.G. A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue 2017, 98, 234–246. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L. Fracture mechanism of cracks in the weakest location of dissimilar metal welded joint under the interaction effect of in-plane and out-of-plane constraints. Eng. Fract. Mech. 2018, 192, 12–23. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Xiao, Q.S.; Shi, X.H.; Fei, B.J. Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy. Int. J. Fatigue 2014, 67, 173–182. [Google Scholar] [CrossRef]
- Gao, J.X.; Heng, F.; Yuan, Y.P.; Liu, Y.Y. A novel machine learning method for multiaxial fatigue life prediction: Improved adaptive neuro-fuzzy inference system. Int. J. Fatigue 2024, 178, 108007. [Google Scholar] [CrossRef]
- Kendall, S.L.; Movahedzadeh, F.; Rison, S.C.G.; Wernisch, L.; Parish, T.; Duncan, K.; Betts, J.C.; Stoker, N.G. The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis 2004, 84, 247–255. [Google Scholar] [CrossRef]
- Wen, Y.K.; Chen, H.C. System reliability under time varying loads: I. J. Eng. Mech. 1989, 115, 808–823. [Google Scholar]
- Hüper, T.; Endo, S.; Ishikawa, N.; Osawa, K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 1999, 39, 288–294. [Google Scholar] [CrossRef]
- Quaresimin, M.; Susmel, L.; Talreja, R. Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue 2010, 32, 2–16. [Google Scholar] [CrossRef]
- Luo, P.; Yao, W.X.; Susmel, L.; Wang, Y.Y.; Ma, X.X. A survey on multiaxial fatigue damage parameters under non-proportional loadings. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1323–1342. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y.H. Multiaxial fatigue damage parameter and life prediction without any additional material constants. Materials 2017, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Y.; Zhu, S.P.; Liu, Q.; Liu, Y.H. A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades. Materials 2017, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Zhou, K.; Lu, X.H.; Lam, Y.C. A review on the mechanical methods for evaluating coating adhesion. Acta Mech. 2014, 225, 431–452. [Google Scholar] [CrossRef]
- Wu, S.L.; Liu, J.H.; Lu, J.M.; Wang, Y.Z.; Kou, W.J. Fatigue life evaluation of notched components affected by multiple factors. Arch. Appl. Mech. 2024, 94, 1871–1889. [Google Scholar] [CrossRef]
- Lamba, H.S.; Sidebottom, O.M. Cyclic plasticity for nonproportional paths: Part 1-Cyclic hardening, erasure of memory, and subsequent strain hardening experiments. J. Eng. Mater. Technol. 1978, 100, 96–103. [Google Scholar] [CrossRef]
- Fatemi, A.; Socie, D.F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Xu, L.; Wang, R.-Z.; Wang, J.; He, L.; Itoh, T.; Miura, H.; Zhang, X.-C.; Tu, S.-T. On multiaxial creep-fatigue considering the non-proportional loading effect: Constitutive modeling, deformation mechanism, and life prediction. Int. J. Plast. 2022, 155, 103337. [Google Scholar] [CrossRef]
- Zhao, T.W.; Jiang, Y.Y. Fatigue of 7075-T651 aluminum alloy. Int. J. Fatigue 2008, 30, 834–849. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Huang, D. A critical plane-strain energy density criterion for multiaxial low cycle fatigue life under nonproportional loading. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 679–686. [Google Scholar]
- Lu, Y.; Wu, H.; Zhong, Z. A simple energy-based model for nonproportional low-cycle multiaxial fatigue life prediction under constant-amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1402–1411. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, S.P.; Hao, Y.Z.; Liao, D.; Qian, G.A. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys. Eng. Fail. Anal. 2018, 93, 55–63. [Google Scholar] [CrossRef]
- Ince, A.; Glinka, G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int. J. Fatigue 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Shang, D.G.; Wang, D.J. A new multiaxial fatigue damage model based on the critical plane approach. Int. J. Fatigue 1998, 20, 241–245. [Google Scholar] [CrossRef]
- Zhao, B.F.; Xie, L.Y.; Bai, X.; Ren, J.G.; Li, H.Y.; Zhang, S.J. A multi-axial low-cycle fatigue life prediction model considering effects of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1488–1503. [Google Scholar] [CrossRef]
- Gates, N.R.; Fatemi, A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis. Int. J. Fatigue 2017, 100, 322–336. [Google Scholar] [CrossRef]
- Liu, J.H.; Zi, R.; Wei, Y.B.; Xie, L.J.; Sun, J.R.; Li, B. A stress gradient-based fatigue life prediction method for multiaxial notched specimen considering additional hardening effect. Int. J. Press. Vessel. Pip. 2022, 195, 104597. [Google Scholar] [CrossRef]
- Santecchia, E.; Hamouda, A.M.S.; Musharavati, F.; Zalnezhad, E.; Cabibbo, M.; El Mehtedi, M.; Spigarelli, S. A review on fatigue life prediction methods for metals. Adv. Mater. Sci. Eng. 2016, 2016, 9573524. [Google Scholar] [CrossRef]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Zhong, Z. Use of an energy-based/critical plane model to assess fatigue life under low-cycle multiaxial cycles. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2694–2708. [Google Scholar] [CrossRef]
- Fatemi, A.; Shamsaei, N. Multiaxial fatigue: An overview and some approximation models for life estimation. Int. J. Fatigue 2011, 33, 948–958. [Google Scholar] [CrossRef]
- Liu, J.H.; Ran, Y.; Xie, L.J.; Xue, W.Z. Multiaxial fatigue life prediction method of notched specimens considering stress gradient effect. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1406–1419. [Google Scholar] [CrossRef]
- Smith, K. A stress-strain function for the fatigue of metals. J. Mater. 1970, 5, 767–778. [Google Scholar]
- Liu, J.H.; Ran, Y.; Wei, Y.B.; Zhang, Z. A critical plane-based multiaxial fatigue life prediction method considering the material sensitivity and the shear stress. Int. J. Press. Vessel. Pip. 2021, 194, 104532. [Google Scholar] [CrossRef]
- Greiner, C.; Gagel, J.; Gumbsch, P. Solids under extreme shear: Friction-mediated subsurface structural transformations. Adv. Mater. 2019, 31, 1806705. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.J.; Miller, K.J.; Brown, M.W. Cyclic deformation of 1% Cr-Mo-V steel under out-of-phase loads. Fatigue Fract. Eng. Mater. Struct. 1979, 2, 217–228. [Google Scholar] [CrossRef]
- Chen, Z.C. Fatigue Life Prediction of Metallic Materials Under Non-Proportional Multiaxial Loading. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2012. (In Chinese). [Google Scholar]
- Faruq, N.Z.; Susmel, L. Proportional/nonproportional constant/variable amplitude multiaxial notch fatigue: Cyclic plasticity, non-zero mean stresses, and critical distance/plane. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1849–1873. [Google Scholar] [CrossRef]
- Wu, Z.R.; Hu, X.T.; Song, Y.D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. Int. J. Fatigue 2014, 59, 170–175. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Shang, D.G.; Sun, Y.J.; Liu, X.D.; Chen, H.; Li, Z.G. Multiaxial notch fatigue life prediction based on pseudo stress correction and finite element analysis under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1674–1690. [Google Scholar] [CrossRef]
- Sun, G.Q.; Shang, D.G.; Bao, M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials. Int. J. Fatigue 2010, 32, 1108–1115. [Google Scholar] [CrossRef]
- Li, B.C.; Jiang, C.; Han, X.; Li, Y. A new approach of fatigue life prediction for metallic materials under multiaxial loading. Int. J. Fatigue 2015, 78, 1–10. [Google Scholar] [CrossRef]
- Lian, W.; Yao, W.X. Fatigue life prediction of composite laminates by FEA simulation method. Int. J. Fatigue 2010, 32, 123–133. [Google Scholar] [CrossRef]
No. | Materials | (MPa) | (MPa) | ||
---|---|---|---|---|---|
1 | AA6061 | 320 | 350 | 0.09 | 0.087 |
2 | BT-9 | 865 | 970 | 0.12 | 0.085 |
3 | VT-9 | 865 | 973 | 0.12 | 0.008 |
4 | 42CrMo4 | 980 | 1100 | 0.122 | 0.436 |
3 | BT-10 | 485 | 557 | 0.148 | −0.002036 |
6 | 2CrNiMoV | 600 | 710 | 0.18 | 0.06 |
7 | In718 | 1172 | 1407 | 0.2 | 0.1 |
8 | S460N | 500 | 643 | 0.29 | 0.25 |
9 | OFHC(CU) | 182 | 240 | 0.32 | −0.0698 |
10 | S25C | 354 | 493 | 0.39 | 0.21558 |
11 | S45C | 445 | 630 | 0.415 | 0.125786 |
12 | S55C | 484 | 695 | 0.43 | 0.388372 |
13 | 6061A1 | 253 | 390 | 0.54 | 0.1494 |
14 | CK45 | 410 | 660 | 0.609 | 0.39 |
15 | SGV410 | 275 | 470 | 0.71 | 0.1597 |
16 | 1Cr-18 | 310 | 605 | 0.95 | 0.04285 |
17 | SUS316 | 260 | 575 | 1.21 | 0.5277 |
18 | SS347 | 250 | 590 | 1.36 | 0.495 |
19 | SUS310S | 215 | 520 | 1.42 | 0.2958 |
20 | SS316L | 230 | 565 | 1.46 | 0.413 |
21 | 800H | 200 | 530 | 1.52 | 0.42 |
22 | SS304 | 260 | 690 | 1.65 | 0.906 |
No. | Materials | (MPa) | (MPa) | ||
---|---|---|---|---|---|
1 | En8 [37] | 453 | 852.3 | 0.8815 | 0.2443 |
2 | TC4 [38] | 842.5 | 1045 | 0.2404 | 0.1346 |
3 | Al7050-T7451 [39] | 455 | 1054 | 1.3165 | 0.4321 |
Materials | E/GPa | /MPa | /MPa | b | c | |||
---|---|---|---|---|---|---|---|---|
En8 | 210 | 852.3 | 0.477 | −0.105 | −0.554 | 0.3 | 971.5 | 0.188 |
TC4 | 108.4 | 116.9 | 0.579 | −0.049 | −0.679 | 0.3 | 1054 | 0.0195 |
Al7050-T7451 | 70.3 | 731.98 | 0.6145 | −0.8235 | −0.7885 | 0.33 | 1096 | 0.0722 |
r/mm | No. | ||||
---|---|---|---|---|---|
6 | 1 | 0 | 39.3 | 114.8 | 225,655 |
2 | 0 | 49.8 | 126.3 | 58,662 | |
3 | 0 | 67.2 | 170.7 | 12,423 | |
4 | 90 | 49.6 | 114.2 | 131,784 | |
3 | 90 | 61.8 | 148.4 | 35,127 | |
6 | 90 | 69.5 | 186.5 | 14,146 | |
3 | 7 | 0 | 40.4 | 102.72 | 156,422 |
8 | 0 | 49 | 123 | 47,739 | |
9 | 0 | 60.6 | 178.8 | 9725 | |
10 | 90 | 46 | 140 | 46,428 | |
11 | 90 | 51 | 132.5 | 33,269 | |
12 | 90 | 63.6 | 181.7 | 8428 | |
1.5 | 13 | 0 | 39.1 | 101.8 | 63,012 |
14 | 0 | 44.1 | 120.5 | 22,974 | |
15 | 0 | 55.1 | 153.7 | 7156 | |
16 | 90 | 41.3 | 110.6 | 31,594 | |
17 | 90 | 45.1 | 125.6 | 11,989 | |
18 | 90 | 55.8 | 158.1 | 6229 |
r/mm | No. | ||||
---|---|---|---|---|---|
4 | 1 | 0 | 15 | 75 | 2627 |
2 | 0 | 35 | 50 | 5690 | |
3 | 0 | 40 | 45 | 2793 | |
4 | 0 | 12 | 60 | 25,106 | |
5 | 0 | 20 | 50 | 26,106 | |
6 | 45 | 15 | 75 | 2969 | |
7 | 45 | 35 | 50 | 4037 | |
8 | 45 | 40 | 45 | 3470 | |
9 | 90 | 15 | 75 | 2855 | |
10 | 90 | 40 | 45 | 4902 | |
11 | 90 | 35 | 50 | 11,019 |
r/mm | No. | ||||
---|---|---|---|---|---|
3 | 1 | 0 | 4.6133 | 3.8853 | 85,778 |
2 | 0 | 11.4995 | 9.6061 | 214 | |
3 | 0 | 6.9227 | 5.9096 | 4447 | |
4 | 0 | 9.1983 | 7.8954 | 922 | |
3 | 45 | 6.9165 | 5.9055 | 5984 | |
6 | 90 | 6.8907 | 5.9276 | 3981 | |
7 | 90 | 11.4812 | 9.9487 | 327 | |
8 | 90 | 9.2128 | 7.9224 | 804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Gao, J.; Yuan, Y.; Zhou, J.; Cheng, Q.; Pan, R. A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model. Materials 2025, 18, 4089. https://doi.org/10.3390/ma18174089
Wang B, Gao J, Yuan Y, Zhou J, Cheng Q, Pan R. A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model. Materials. 2025; 18(17):4089. https://doi.org/10.3390/ma18174089
Chicago/Turabian StyleWang, Bo, Jianxiong Gao, Yiping Yuan, Jianxing Zhou, Qin Cheng, and Rui Pan. 2025. "A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model" Materials 18, no. 17: 4089. https://doi.org/10.3390/ma18174089
APA StyleWang, B., Gao, J., Yuan, Y., Zhou, J., Cheng, Q., & Pan, R. (2025). A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model. Materials, 18(17), 4089. https://doi.org/10.3390/ma18174089