Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure Characterization
3.1.1. Metallographic Microstructure
3.1.2. SEM Microstructure and Morphology with EDS Energy Spectrum Analysis
3.1.3. EBSD Analysis
3.2. Mechanical Properties
4. Conclusions
- (1)
- The build height exhibits distinct phase evolution due to cooling rate variations. The bottom region (high cooling rate) develops elongated austenite with WA; the middle region (interlayer thermal cycling) achieves the finest grains (austenite: 4.16 μm, ferrite: 3.18 μm) and highest recrystallization fraction (∼50%), enhancing hardness (238.6 HV); and the top region (slow cooling) forms coarse blocky austenite. Secondary austenite (γ2) in interlayer zones shows Cr/Ni partitioning, increasing susceptibility to microsegregation.
- (2)
- Horizontal specimens exhibit superior tensile strength (UTS: 610 MPa vs. vertical: 593 MPa) due to uniform intralayer microstructures and minimal interlayer defects. Conversely, vertical specimens display higher ductility, facilitated by columnar grain alignment (<001>//Z texture in ferrite, <101>//Z in austenite) and layered boundaries accommodating plastic deformation. Fractography confirms ductile failure with equiaxed dimples, finer in vertical samples.
- (3)
- CMT-WAAM enables dense, high-performance DSS2209 components with moderate hardness uniformity (Δ < 30 HV). Interlayer thermal cycling critically governs recrystallization and grain refinement, while substrate proximity accelerates bottom-layer cooling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasaki, S.; Katsumura, T.; Yanagimoto, J. Grain refinement technology for duplex stainless steel using rapid cooling immediately before hot working. J. Mater. Process. Technol. 2020, 281, 116614. [Google Scholar] [CrossRef]
- Sakata, M.; Kadoi, K.; Inoue, H. Mechanism for enhanced age hardening of 22% Cr duplex stainless steel weld metal fabricated with grade 2209 filler material. Mater. Today Commun. 2022, 33, 104201. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Han, J.; Wu, H.C.; Yang, B.; Wang, X.T. Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel. Nucl. Eng. Des. 2013, 259, 1–7. [Google Scholar] [CrossRef]
- Wu, K.; Hua, X.; Shen, C.; Ding, Y.; Xin, J.; Mou, G.; Wang, L.; Zhang, Y.; Zhou, W.; Reddy, K.M. Effect of variable polarity during cold metal transfer on microstructure and mechanical properties of directed energy deposition-arc built 2209 duplex stainless steel. Addit. Manuf. 2023, 75, 103750. [Google Scholar] [CrossRef]
- He, T.; Yu, S.; Huang, A.; Yu, G. Path planning and forming of wire multi-arc additive collaborative manufacture for marine propeller bracket. J. Manuf. Process. 2021, 68, 1191–1201. [Google Scholar] [CrossRef]
- He, T.; Yu, S.; Shi, Y.; Huang, A. Forming and mechanical properties of wire arc additive manufacture for marine propeller bracket. J. Manuf. Process. 2020, 52, 96–105. [Google Scholar] [CrossRef]
- Elkhouly, Y.M.; Lim, W.S.; Dharmawan, A.G.; Soh, G.S. Adaptive contour based printing of a propeller using hybrid-wire arc additive manufacturing. Mater. Today Proc. 2022, 70, 395–400. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Yang, Y.; Bai, J.; Shuai, C.; Buhagiar, J.; Ning, X. Laser powder bed fusion of biodegradable magnesium alloys: Process, microstructure and properties. Int. J. Extrem. Manuf. 2025, 7, 022007. [Google Scholar] [CrossRef]
- Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. Manuf. Process. 2015, 31, 1543–1555. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.; Xi, X.; Tang, H.; Li, X.; Rao, J.H.; Xiao, Z. Enhanced mechanical performance of duplex stainless steels via dense core-shell nano-inclusions in-situ formed upon selective laser melting. Scr. Mater. 2023, 237, 115711. [Google Scholar] [CrossRef]
- Rajendran, P.; Ganesan, A. Numerical and experimental investigation of direct rapid tooling for sheet metal forming using selective laser sintering. J. Manuf. Process. 2024, 120, 555–567. [Google Scholar] [CrossRef]
- Mughal, M.P.; Fawad, H.; Mufti, R.A. Three-dimensional Finite-element Modelling of Deformationin Weld-based Rapid Prototyping. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006, 220, 875–885. [Google Scholar] [CrossRef]
- Wittig, B.; Zinke, M.; Jüttner, S. Influence of arc energy and filler metal composition on the microstructure in wire arc additive manufacturing of duplex stainless steels. Weld World 2021, 65, 47–56. [Google Scholar] [CrossRef]
- Eriksson, M.; Lervåg, M.; Sørensen, C.; Robertstad, A.; Brønstad, B.M.; Nyhus, B.; Aune, R.; Ren, X.; Akselsen, O.M. Additive manufacture of superduplex stainless steel using WAAM. MATEC Web Conf. 2018, 188, 03014. [Google Scholar] [CrossRef]
- Nikam, P.P.; Arun, D.; Ramkumar, K.D.; Sivashanmugam, N. microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594. Mater. Charact. 2021, 169, 110671. [Google Scholar] [CrossRef]
- Rosso, M.; Peter, I.; Suani, D. About heat treatment and properties of Duplex Stainless Steels. J. Achiev. Mater. Manuf. Eng. 2013, 59, 26–36. [Google Scholar]
- Zhang, Z.; Jing, H.; Xu, L.; Han, Y.; Zhao, L. Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods. Mater. Des. 2016, 109, 670–685. [Google Scholar] [CrossRef]
- Muthupandi, V.; Srinivasan, P.B.; Seshadri, S.K.; Sundaresan, S. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A 2003, 358, 9–16. [Google Scholar] [CrossRef]
- Muthupandi, V.; Srinivasan, P.B.; Shankar, V.; Seshadri, S.K.; Sundaresan, S. Effect of nickel and nitrogen addition on the micro-structure and mechanical properties of power beam processed duplex stainless steel (UNS 31803) weld metals. Mater. Lett. 2005, 59, 2305–2309. [Google Scholar] [CrossRef]
- Ramazan, K. Effect of solidification mode and morphology of microstructure on the hydrogen content of duplex stainless steel weld metal. Mater. Des. 2004, 25, 1–9. [Google Scholar] [CrossRef]
- Eghlimi, A.; Shamanian, M.; Eskandarian, M.; Zabolian, A.; Szpunar, J.A. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal. Mater. Charact. 2015, 106, 27–35. [Google Scholar] [CrossRef]
- Tahaei, A.; Vanani, B.B.; Abbasi, M.; Garagnani, G.L. A comparison of microstructure and mechanical characteristics correlation of the joint specimens for duplex stainless steel UNS S32304 and super-duplex stainless steel UNS S32750: The role of post-weld heat treatment. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 238, 1742–1758. [Google Scholar] [CrossRef]
- Eghlimi, A.; Shamanian, M.; Raeissi, K. Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process. Surf. Coat. Technol. 2014, 244, 45–51. [Google Scholar] [CrossRef]
- Baruwa, A.D.; Ndou, N. Characteristics and properties of hot-deformed duplex stainless steel 2205: An overview. Mater. Res. Express 2025, 12, 022001. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.; Wang, Y.; Wang, L.; Su, L.; Cuiuri, D.; Zhao, Y.; Li, H. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit. Manuf. 2020, 34, 101240. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Liu, J.; Zhou, Y.; Li, M.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting. Acta Mater. 2017, 136, 90–104. [Google Scholar] [CrossRef]
- Hunt, J. Solidification and Casting of Metals, 3rd ed.; The Metal Society: London, UK, 1979. [Google Scholar]
- Hengsbach, F.; Koppa, P.; Duschik, K.; Holzweissig, M.J.; Burns, M.; Nellesen, J.; Tillmann, W.; Tröster, T.; Hoyer, K.P.; Schaper, M. Duplex stainless steel fabricated by selective laser melting—Microstructural and mechanical properties. Mater. Des. 2017, 133, 136–142. [Google Scholar] [CrossRef]
- ASTM A890/A890M-99; Standard Specification for Castings, Iron-ChromiumNickel-Molybdenum Corrosion Resistant, Duplex (Austenitic/Ferritic) for General Application. ASTM: West Conshohocken, PA, USA, 1999.
Cr | Ni | Mo | Mn | Si | N | O | Fe |
---|---|---|---|---|---|---|---|
22.7 | 9 | 3.2 | 0.9 | 0.8 | 0.13 | 0.03 | Balance |
Position | Phase | Alloying Element wt (%) | ||
---|---|---|---|---|
Cr | Ni | Mo | ||
Top | α | 24.2 ± 0.2 | 5.4 ± 0.4 | 3.7 ± 0.1 |
γ | 21.7 ± 0.1 | 5.8 ± 0.4 | 3.5 ± 0.1 | |
γ2 | 21.0 ± 0.2 | 7.2 ± 0.5 | 3.2 ± 0.2 | |
Middle | α | 23.7 ± 0.1 | 5.0 ± 0.4 | 3.9 ± 0.1 |
γ | 22.6 ± 0.1 | 5.6 ± 0.4 | 3.7 ± 0.2 | |
γ2 | 21.7 ± 0.2 | 7.8 ± 0.5 | 3.2 ± 0.2 | |
Bottom | α | 25.2 ± 0.1 | 5.5 ± 0.4 | 4.5 ± 0.1 |
γ | 22.4 ± 0.2 | 5.8 ± 0.4 | 3.6 ± 0.2 | |
γ2 | 22.0 ± 0.2 | 7.6 ± 0.5 | 3.1 ± 0.2 |
Position | XOZ | YOZ | XOY | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bottom | Middle | Top | Bottom | Middle | Top | Bottom | Middle | Top | ||
γ-Fe | Grain Size (μm) | 4.5 ± 0.4 | 4.0 ± 0.5 | 4.6 ± 0.4 | 4.0 ± 0.5 | 4.2 ± 0.4 | 5.1 ± 0.4 | 4.9 ± 0.5 | 4.2 ± 0.5 | 5.2 ± 0.4 |
Fraction (%) | 66.7 ± 3.0 | 66.4 ± 3.0 | 66.9 ± 3.0 | 59.1 ± 3.0 | 58.7 ± 3.0 | 62.1 ± 3.0 | 59.9 ± 3.0 | 57.8 ± 3.0 | 60.8 ± 3.0 | |
LAGB | 87.2 ± 2.0 | 85.6 ± 2.0 | 85.0 ± 2.0 | 89.1 ± 2.0 | 89.5 ± 2.0 | 90.7 ± 2.0 | 94.4 ± 1.5 | 85.6 ± 2.0 | 93.6 ± 1.5 | |
HAGB | 12.8 ± 2.0 | 14.4 ± 2.0 | 15.0 ± 2.0 | 10.9 ± 2.0 | 10.5 ± 2.0 | 9.3 ± 2.0 | 5.6 ± 1.5 | 14.4 ± 2.0 | 6.4 ± 1.5 | |
Recrystallized | 16.2 ± 2.5 | 17.4 ± 2.5 | 23.3 ± 3.0 | 17.9 ±2.5 | 26.0 ± 3.0 | 17.3 ± 2.5 | 10.9 ± 2.5 | 30.8 ± 3.0 | 10.3 ± 2.5 | |
Substructured | 50.2 ± 3.0 | 53.9 ± 3.0 | 58.9 ± 3.0 | 42.7 ± 3.0 | 49.6 ± 3.0 | 49.3 ± 3.0 | 15.2 ± 2.5 | 44.3 ± 3.0 | 14.6 ± 2.5 | |
Deformed | 33.6 ± 3.0 | 28.7 ± 3.0 | 17.8 ± 2.5 | 39.3 ± 3.0 | 24.4 ± 3.0 | 33.3 ± 3.0 | 73.8 ± 3.0 | 24.9 ± 3.0 | 75.1 ± 3.0 | |
α-Fe | Grain Size (μm) | 3.4 ± 0.4 | 3.1 ± 0.3 | 3.7 ± 0.4 | 3.6 ± 0.4 | 3.2 ± 0.3 | 3.8 ± 0.4 | 3.5 ± 0.4 | 3.2 ± 0.3 | 4.1 ± 0.4 |
Fraction (%) | 33.3 ± 3.0 | 33.6 ± 3.0 | 33.1 ± 3.0 | 40.9 ± 3.0 | 41.3 ± 3.0 | 37.9 ± 3.0 | 40.1 ± 3.0 | 42.2 ± 3.0 | 39.2 ± 3.0 | |
LAGB | 97.4 ± 1.0 | 96.7 ± 1.0 | 94.9 ± 1.5 | 96.4 ± 1.0 | 97.9 ± 1.0 | 96.1 ± 1.0 | 98.3 ± 0.8 | 93.1 ± 1.5 | 98.0 ± 0.8 | |
HAGB | 2.6 ± 1.0 | 3.3 ± 1.0 | 5.1 ± 1.0 | 3.6 ± 1.0 | 2.1 ± 1.0 | 3.9 ± 1.0 | 1.7 ± 0.8 | 6.9 ± 1.0 | 2.0 ± 0.8 | |
Recrystallized | 25.9 ± 3.0 | 36.1 ± 3.0 | 34.7 ± 3.0 | 25.0 ± 3.0 | 25.4 ± 3.0 | 29.7 ± 3.0 | 10.0 ± 2.5 | 26.6 ± 3.0 | 14.7± 2.5 | |
Substructured | 54.0 ± 3.0 | 39.4 ± 3.0 | 43.8 ± 3.0 | 52.9 ± 3.0 | 49.7 ± 3.0 | 47.9 ± 3.0 | 10.4 ± 2.5 | 45.2 ± 3.0 | 17.7 ± 2.5 | |
Deformed | 20.1 ± 3.0 | 24.5 ± 3.0 | 21.5 ± 3.0 | 22.1 ± 3.0 | 24.9 ± 3.0 | 22.5 ± 3.0 | 79.6 ± 3.0 | 28.2 ± 3.0 | 67.6 ± 3.0 |
Process | Specimen Location | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Ultimate Tensile Strength × Elongation (GPa·%) | References |
---|---|---|---|---|---|---|
SLM DSS as-built condition | / | 940 | / | 12 | 11.3 | [28] |
CAST DSS | / | 695 | 450 | 25 | 17.4 | [29] |
CMT-WAAM 2209DSS as-built condition | horizontal direction | 610 | 408 | 53 | 32.3 | Present work |
vertical direction | 593 | 389 | 57 | 33.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, L.; Zhang, L.; Hong, J.; Liu, F.; Wang, D.; Zhou, F.; Yang, Y. Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel. Materials 2025, 18, 4066. https://doi.org/10.3390/ma18174066
Sun J, Liu L, Zhang L, Hong J, Liu F, Wang D, Zhou F, Yang Y. Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel. Materials. 2025; 18(17):4066. https://doi.org/10.3390/ma18174066
Chicago/Turabian StyleSun, Jian, Liang Liu, Long Zhang, Jun Hong, Feihong Liu, Dongsheng Wang, Fei Zhou, and Youwen Yang. 2025. "Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel" Materials 18, no. 17: 4066. https://doi.org/10.3390/ma18174066
APA StyleSun, J., Liu, L., Zhang, L., Hong, J., Liu, F., Wang, D., Zhou, F., & Yang, Y. (2025). Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel. Materials, 18(17), 4066. https://doi.org/10.3390/ma18174066