Dual-Strategy Design Based on Polymer–Matrix Composite Cathode and Coated Separator for High-Performance Lithium–Iron Disulfide Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Cathode Fabrication
2.2. Separator Modification
2.3. Full-Cell Assembly
2.4. Electrochemical Testing
2.4.1. Cyclic Charge–Discharge Testing
2.4.2. Electrochemical Impedance Spectroscopy (EIS)
2.4.3. Cyclic Voltammetry (CV)
2.4.4. Electronic Conductivity Measurement
2.5. Microstructural Characterization
2.5.1. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS) Analysis
2.5.2. Brunauer–Emmett–Teller (BET) Surface Area and Pore Size Analysis
2.6. Mechanical Testing
3. Results and Discussion
3.1. Synergistic Enhancement of Electrochemical Performance
3.2. Mechanism of Cathode Modification for Structural Degradation Suppression
3.3. Suppression of Shuttle Effect via Separator Modification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Offermann, J.; Paolella, A.; Adelung, R.; Abdollahifar, M. Rising anode-free lithium-sulfur batteries. Chem. Eng. J. 2024, 502, 157920. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928. [Google Scholar] [CrossRef]
- Zhou, J.; Holekevi Chandrappa, M.L.; Tan, S.; Wang, S.; Wu, C.; Nguyen, H.; Wang, C.; Liu, H.; Yu, S.; Miller, Q.R. Healable and conductive sulfur iodide for solid-state Li–S batteries. Nature 2024, 627, 301. [Google Scholar] [CrossRef]
- Zhang, S.S. The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J. Mater. Chem. A 2015, 3, 7689. [Google Scholar] [CrossRef]
- Evans, T.; Piper, D.M.; Kim, S.C.; Han, S.S.; Bhat, V.; Oh, K.H.; Lee, S.H. Ionic Liquid Enabled FeS2 for High-Energy-Density Lithium-Ion Batteries. Adv. Mater. 2014, 26, 7386. [Google Scholar] [CrossRef]
- Li, J.; Pan, J.; Chen, Q.; Liu, G.; Li, T.; Zeng, L.; Wan, K.; Liu, Q.; Liang, Z. Small intestinal structure Ni2P-CNTs@ NHCF nanoreactor accelerating sulfur conversion kinetics for high performance lithium-sulfur batteries. Chem. Eng. Sci. 2025, 304, 121074. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, T.; Wang, R.; Chen, B.; Wang, D.; Wang, T.; Yang, Z.; Liu, T.; Mao, Q.; Li, T. Regulating p-Band Center of Sulfur in Li-Argyrodite to stabilize dual solid–solid interface for robust all-solid-state lithium–sulfur battery. Adv. Funct. Mater. 2025, 35, 2412144. [Google Scholar] [CrossRef]
- Kang, D.G.; Azimov, F.; Seo, D.; Park, G.; Oh, M.G.; Lee, H.G.; Lee, Y.J.; Jung, H.M.; Song, S.W. S@FeS2 Core–shell cathode nanomaterial for preventing polysulfides shuttling and forming solid electrolyte interphase in high-rate Li–S batteries. Small 2024, 20, 2404917. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, W.; Liu, S.; Zhou, L. FeS2 anchored to nitrogen-doped porous carbon nanosheets for lithium-sulfur batteries. Ionics 2025, 31, 4195. [Google Scholar] [CrossRef]
- Li, J.; Gao, L.; Pan, F.; Gong, C.; Sun, L.; Gao, H.; Zhang, J.; Zhao, Y.; Wang, G.; Liu, H. Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 2024, 16, 12. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Jia, S.; Zhao, Q.; Zheng, Q.; Ma, Y.; Ma, T.; Li, X. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries. J. Energy Storage 2023, 72, 108372. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhou, G.; Lv, W.; Ling, G.; Zhi, L.; Yang, Q.H. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Q.; Deng, J.; Xiao, H.; Zhang, T.; Fu, D.; Xu, M.; Liu, Y. Dynamic borate bridged soft-hard polymers network as aqueous fluorine-free binder for high performance lithium-sulfur battery. Mater. Lett. 2025, 386, 138077. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, Y.; Lv, X.; Gao, L.; Liu, B.; Zhang, P. Lithium selective deposition on heterogeneous magnesium grains stabilized lithium metal batteries. Mater. Lett. 2025, 387, 138278. [Google Scholar] [CrossRef]
- Ashby, D.S.; Horner, J.S.; Whang, G.; Lapp, A.S.; Roberts, S.A.; Dunn, B.; Kolesnichenko, I.V.; Lambert, T.N.; Talin, A.A. Understanding the electrochemical performance of FeS2 conversion cathodes. ACS Appl. Mater. Interfaces 2022, 14, 26604. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Zhang, Q.; Sun, C.; Wang, J.; Zhong, X.; Chen, B.; Li, C.; Gao, R.; Han, Z.; Zhou, G. Crosslinked Nanofiber-Reinforced Solid-State Electrolytes with Polysulfide Fixation Effect Towards High Safety Flexible Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2203272. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Z.; Chen, H.; Fu, X.; Awuye, D.E.; Yin, X.; Zhao, Y. Breaking the barrier: Strategies for mitigating shuttle effect in lithium–sulfur batteries using advanced separators. Polymers 2023, 15, 3955. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, G.; Li, S.; Liu, H.; Wang, L.; Li, H. Unlocking cycling longevity in micro-sized conversion-type FeS2 cathodes. Joule 2023, 7, 2609. [Google Scholar] [CrossRef]
- Pender, J.P.; Jha, G.; Youn, D.H.; Ziegler, J.M.; Andoni, I.; Choi, E.J.; Heller, A.; Dunn, B.S.; Weiss, P.S.; Penner, R.M. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243. [Google Scholar] [CrossRef]
- Santos, D.A.; Rezaei, S.; Zhang, D.; Luo, Y.; Lin, B.; Balakrishna, A.R.; Xu, B.-X.; Banerjee, S. Chemistry–mechanics–geometry coupling in positive electrode materials: A scale-bridging perspective for mitigating degradation in lithium-ion batteries through materials design. Chem. Sci. 2023, 14, 458. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K. Effect of porous structure and morphology of cathode on the degradation of lithium-ion batteries. J. Energy Storage 2022, 52, 104788. [Google Scholar] [CrossRef]
- Mohanty, D.; Li, J.; Nagpure, S.C.; Wood III, D.L.; Daniel, C. Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy Sustain. 2015, 2, E15. [Google Scholar] [CrossRef]
- Kabir, M.; Demirocak, D.E. Degradation mechanisms in Li-ion batteries: A state-of-the-art review. Int. J. Energy Res. 2017, 41, 1963. [Google Scholar] [CrossRef]
- Cabana, J.; Kwon, B.J.; Hu, L. Mechanisms of degradation and strategies for the stabilization of cathode–electrolyte interfaces in Li-ion batteries. Acc. Chem. Res. 2018, 51, 299. [Google Scholar] [CrossRef]
- Liu, Y.T.; Liu, S.; Li, G.R.; Gao, X.P. Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 2021, 33, 2003955. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Qi, Z.G.; Liu, F.S.; Qin, G.H. Antibonding orbital tailor and stress relief engineering for FeS2 complex toward superior sodium storage. Rare Met. 2024, 43, 5048. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, B.; Liu, S.; Wang, Z.; Xu, J.; Wang, C. Interface design for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 2024, 14, 2303046. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, Y.; Pei, Z.; Luan, D.; Wang, X.; Lou, X.W. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2023, 62, e202305828. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, S.; Ouyang, Y.; Li, D.; Li, X.; He, W.; Deng, H.; Gong, W.; Tan, C.; Zeng, Q. Constructing heterogeneous structure in metal–organic framework-derived hierarchical sulfur hosts for capturing polysulfides and promoting conversion kinetics. ACS Nano 2021, 15, 18363. [Google Scholar] [CrossRef]
- Heo, J.; Hong, J.W.; Gu, H.W.; Sung, J.; Kim, D.H.; Kim, J.H.; Kang, S.; Lee, Y.J.; Choi, H.Y.; Kim, D. A promising approach to ultra-flexible 1 Ah lithium–sulfur batteries using oxygen-functionalized single-walled carbon nanotubes. Adv. Sci. 2025, 12, 2406536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, Y.; Wang, P.; Han, P.; Li, K.; Liu, W. Preparation of a sulfur-doped graphene-wrapped FeS2 microsphere composite material for lithium-ion batteries. Energy Fuels 2021, 35, 20330. [Google Scholar] [CrossRef]
- Dong, H.; Liu, R.; Hu, X.; Zhao, F.; Kang, L.; Liu, L.; Li, J.; Tan, Y.; Zhou, Y.; Brett, D.J.L.; et al. Cathode–Electrolyte Interface Modification by Binder Engineering for High-Performance Aqueous Zinc-Ion Batteries. Adv. Sci. 2023, 10, 2205084. [Google Scholar] [CrossRef]
- Sun, Y.-G.; Du, X.; Wang, J.-G.; Liu, Q.; Mu, J.-L.; Li, Z.-F.; Jiang, H.-Q.; Wang, L.-K. Interface engineering of Co nanoparticles decorated by Ir confined in N-doped carbon nanotubes for flexible Zn–air batteries and pH-universal overall water splitting. Rare Metals 2024, 43, 6447. [Google Scholar] [CrossRef]
- Zou, J.; Zhao, J.; Wang, B.; Chen, S.; Chen, P.; Ran, Q.; Li, L.; Wang, X.; Yao, J.; Li, H. Unraveling the reaction mechanism of FeS2 as a Li-ion battery cathode. ACS Appl. Mater. Interfaces 2020, 12, 44850. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhai, Q.; Wang, B.; Hu, L.; Ma, Y.; Dai, Y.; Tang, S.; Meng, X. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries. Chem. Eng. J. 2022, 439, 135535. [Google Scholar] [CrossRef]
- Wu, H.; Wu, L.; Li, Y.; Dong, W.; Ma, W.; Li, S.; Xiao, D.; Huang, P.; Zhang, X. Direct epitaxial growth of polycrystalline MOF membranes on Cu foils for uniform Li deposition in long-life anode-free Li Metal Batteries. Angew. Chem. Int. Ed. 2025, 137, e202417209. [Google Scholar] [CrossRef]
- Son, S.B.; Yersak, T.A.; Piper, D.M.; Kim, S.C.; Kang, C.S.; Cho, J.S.; Suh, S.S.; Kim, Y.U.; Oh, K.H.; Lee, S.H. A Stabilized PAN-FeS2 Cathode with an EC/DEC Liquid Electrolyte. Adv. Energy Mater. 2014, 4, 1300961. [Google Scholar] [CrossRef]
- Hu, Y.X.; Huang, H.J.; Yu, D.S.; Wang, X.Y.; Li, L.L.; Hu, H.; Zhu, X.B.; Peng, S.J.; Wang, L.Z. All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS2@C/CNT Cathode. Nano-Micro Lett. 2021, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Wu, Z.R.; Wang, H.; Niu, X.B.; Li, H.; Wang, L.P. Chelating-Type Binders toward Stable Cycling and High-Safety Transition-Metal Sulfide-Based Lithium Batteries. Acs Energy Lett. 2024, 9, 4666. [Google Scholar] [CrossRef]
- Miao, X.; Song, C.; Hu, W.; Ren, Y.; Shen, Y.; Nan, C.W. Achieving high-performance lithium–sulfur batteries by modulating Li+ desolation barrier with liquid crystal polymers. Adv. Mater. 2024, 36, 2401473. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, 1808338. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Han, J.; Chen, L.; Liu, W.; Jiao, F.; Zhu, H.; Qin, W. Binding mechanisms of PVDF in lithium ion batteries. Appl. Surf. Sci. 2021, 553, 149564. [Google Scholar] [CrossRef]
- Bicy, K.; Gueye, A.B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithium-ion battery separators based on electrospun PVDF: A review. Surf. Interfaces 2022, 31, 101977. [Google Scholar] [CrossRef]
- Halder, B.; Mohamed, M.G.; Kuo, S.-W.; Elumalai, P. Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery. Mater. Today Chem. 2024, 36, 101926. [Google Scholar] [CrossRef]
- Wu, S.; Yao, Y.; Nie, X.; Yu, Z.; Yu, Y.; Huang, F. Interfacial Engineering of Binder-Free Janus Separator with Ultra-Thin Multifunctional Layer for Simultaneous Enhancement of Both Metallic Li Anode and Sulfur Cathode. Small 2022, 18, 2202651. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhou, R.; Zhao, H.; Ye, F.; Zhang, X.; Ge, Y. Oriented PAN/PVDF/PAN laminated nanofiber separator for lithium-ion batteries. Text. Res. J. 2022, 92, 2635. [Google Scholar] [CrossRef]
- Dong, G.; Li, H.; Wang, Y.; Jiang, W.; Ma, Z. Electrospun PAN/cellulose composite separator for high performance lithium-ion battery. Ionics 2021, 27, 2955. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Q.; Zhang, W.; Wu, R.; Tang, H.; Ma, Y.; Xu, W.; Jiang, S. Electrospun MoS2-CNTs-PVA/PVA Hybrid Separator for High-Performance Li/FeS2 Batteries. Polymers 2024, 16, 921. [Google Scholar] [CrossRef]
- Shao, J.; Huang, C.; Zhu, Q.; Sun, N.; Zhang, J.; Wang, R.; Chen, Y.; Zhang, Z. Flexible CNT-interpenetrating hierarchically porous sulfurized polyacrylonitrile (CIHP-SPAN) electrodes for high-rate lithium-sulfur (Li-S) batteries. Nanomaterials 2024, 14, 1155. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Yuan, C.; Li, X.; Liu, X.; Guo, H.; Sun, H. Optimized output of piezoelectric energy harvesters with coaxial PVDF/PAN/CNT composite fibers. Sens. Actuators A Phys. 2025, 388, 116450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Lu, Q.; Li, J.; Zhang, Q.; Yu, H.; Wang, Y.; Li, J.; Ren, H.; Liang, H.; Shen, F.; et al. Dual-Strategy Design Based on Polymer–Matrix Composite Cathode and Coated Separator for High-Performance Lithium–Iron Disulfide Batteries. Materials 2025, 18, 4058. https://doi.org/10.3390/ma18174058
Zhang F, Lu Q, Li J, Zhang Q, Yu H, Wang Y, Li J, Ren H, Liang H, Shen F, et al. Dual-Strategy Design Based on Polymer–Matrix Composite Cathode and Coated Separator for High-Performance Lithium–Iron Disulfide Batteries. Materials. 2025; 18(17):4058. https://doi.org/10.3390/ma18174058
Chicago/Turabian StyleZhang, Fan, Qiang Lu, Jiachen Li, Qiongyue Zhang, Haotian Yu, Yahao Wang, Jinrui Li, Haodong Ren, Huirong Liang, Fei Shen, and et al. 2025. "Dual-Strategy Design Based on Polymer–Matrix Composite Cathode and Coated Separator for High-Performance Lithium–Iron Disulfide Batteries" Materials 18, no. 17: 4058. https://doi.org/10.3390/ma18174058
APA StyleZhang, F., Lu, Q., Li, J., Zhang, Q., Yu, H., Wang, Y., Li, J., Ren, H., Liang, H., Shen, F., & Han, X. (2025). Dual-Strategy Design Based on Polymer–Matrix Composite Cathode and Coated Separator for High-Performance Lithium–Iron Disulfide Batteries. Materials, 18(17), 4058. https://doi.org/10.3390/ma18174058