Behavior of Phosphorus During Selective Reduction of Iron from Oolitic Ore and Separation of Reduction Products
Abstract
1. Introduction
- -
- wet magnetic separation;
- -
- liquid-phase separation during smelting.
2. Materials and Methods
2.1. Hydrogen Reduction
2.2. Hydrogen Reduction
2.3. Liquid-Phase Separation
3. Results and Discussion
3.1. Hydrogen Reduction
3.2. Magnetic Separation
- -
- inclusion of phosphates within iron grains;
- -
- low magnetic contrast between the phases;
- -
- aggregate bonding of phases after reduction;
- -
- loss of the non-magnetic fraction, leading to underestimation of its content and composition.
3.3. Liquid-Phase Separation
3.4. Phosphorus Reduction by Metallic Iron During Smelting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maynard, J.B.; Van Houten, F.B. Descriptive Model of Oolitic Ironstones. In Developments in Mineral Deposit Modeling; U.S. Geological Survey: Washington, DC, USA, 2004; pp. 39–43. [Google Scholar]
- Li, S.F.; Sun, Y.S.; Han, Y.X.; Shi, G.Q.; Gao, P. Fundamental research in utilization of an oolitic hematite by deep reduction. Adv. Mater. Res. 2011, 158, 106–112. [Google Scholar] [CrossRef]
- Suleimen, B.; Salikhov, S.P.; Roshchin, V.Y. Study of the iron ores of the Ayat deposit of the oolite type. Min. Informational Anal. Bull. 2022, 10, 50–58. [Google Scholar] [CrossRef]
- Zhou, W.; Han, Y.-X.; Sun, Y.-S.; Li, Y.-J. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int. J. Miner. Metall. Mater. 2020, 27, 443–453. [Google Scholar] [CrossRef]
- Pan, J.; Lu, S.; Li, S.; Zhu, D.; Guo, Z.; Shi, Y.; Dong, T. A new route to upgrading the high-phosphorus oolitic hematite ore by sodium magnetization roasting-magnetic separation-acid and alkaline leaching process. Minerals 2022, 12, 568. [Google Scholar] [CrossRef]
- Wu, S.; Sun, T.; Kou, J.; Xu, H. A new iron recovery and dephosphorization approach from high-phosphorus oolitic iron ore via oxidation roasting-gas-based reduction and magnetic separation process. Powder Technol. 2023, 413, 118043. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.; Cui, Q.; Xu, C.; Kou, J. Effect of coal type on the reduction and magnetic separation of a high-phosphorus oolitic hematite ore. ISIJ Int. 2015, 55, 536–543. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, D.-Y.; You, X.-M.; Deng, X.-J.; Zuo, H.-B.; She, X.-F.; Xue, Q.-G.; Wang, G.; Wang, J.-S. Dephosphorization of high-phosphorus iron ore by direct reduction of hydrogen-rich gases and melting separation. J. Cent. South Univ. 2024, 31, 4120–4136. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Zuo, H. Phosphorus reduction behavior of high-phosphate iron ore during hydrogen-rich sintering. Int. J. Miner. Metall. Mater. 2022, 29, 1862–1872. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, G.Q.; Zhao, D.; Ma, J.H.; Yang, J. Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics. Hydrometallurgy 2017, 171, 61–68. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Z.; Tang, H. Dephosphorization treatment of high phosphorus oolitic iron ore by hydrometallurgical process and leaching kinetics. ISIJ Int. 2013, 53, 2056–2064. [Google Scholar] [CrossRef]
- Ionkov, K.; Gaydardzhiev, S.; de Araujo, A.C.; Bastin, D.; Lacoste, M. Amenability for processing of oolitic iron ore concentrate for phosphorus removal. Miner. Eng. 2013, 46, 119–127. [Google Scholar] [CrossRef]
- Zhu, D.; Chun, T.-J.; Pan, J.; Lu, L.-M.; He, Z. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int. J. Miner. Metall. Mater. 2013, 20, 505–513. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.; Kou, J.; Wei, Y.; Xu, C.; Liu, Z. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 2013, 53, 427–433. [Google Scholar] [CrossRef]
- Tang, H.; Fu, X.; Qin, Y.; Qi, T. Iron recovery and phosphorus removal from oolitic high-phosphorus haematite using the FASTMELT® process: A comparative study of two reductants. J. South. Afr. Inst. Min. Metall. 2017, 117, 387–395. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, Z.H.; Liu, J.; Xiang, F.P.; Zhou, J.H.; Cen, K.F. Reduction roasting and magnetic separation of oolitic hematite ore by coal combustion in fluidized bed. J. Cent. South Univ. Technol. 2013, 47, 675–679. [Google Scholar]
- Carlson, J.J.; Kawatra, S.K. Rejecting phosphorus in hematitic iron ore streams: Is flotation the best approach? Min. Metall. Explor. 2014, 31, 143–149. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, L. Increasing iron and reducing phosphorus grades of magnetic-roasted high-phosphorus oolitic iron ore by low-intensity magnetic separation–reverse flotation. Processes 2019, 7, 388. [Google Scholar] [CrossRef]
- Wang, J.; Shen, S.; Kang, J.; Li, H.; Guo, Z. Effect of ore solid concentration on the bioleaching of phosphorus from high-phosphorus iron ores using indigenous sulfur-oxidizing bacteria from municipal wastewater. Process Biochem. 2010, 45, 1624–1631. [Google Scholar] [CrossRef]
- Ocampo-López, C.; Ospina-Sanjuan, Á.; Ramírez-Carmona, M.; Rendón-Castrillón, L. Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes. Metals 2022, 12, 1424. [Google Scholar] [CrossRef]
- da Silva, L.M.; Giese, E.C.; de Medeiros, G.A.; Fernandes, M.T.; de Castro, J.A. Evaluation of the use of Burkholderia caribensis bacteria for the reduction of phosphorus content in iron ore particles. Mater. Res. 2022, 25, e20210427. [Google Scholar] [CrossRef]
- Suleimen, B.; Salikhov, S.P.; Sharipov, F.H.; Roshchin, V.E. Selective solid-phase reduction of iron in phosphorous oolite ores. Izv. Ferrous Metall. 2023, 66, 479–484. [Google Scholar] [CrossRef]
- Salikhov, S.P.; Suleimen, B.; Roshchin, V.E. Selective reduction of iron and phosphorus from oolitic ore. Izv. Ferrous Metall. 2020, 63, 560–567. [Google Scholar] [CrossRef]
- Suleimen, B.; Salikhov, S.P. Behavior of extrusion briquettes (Brex) and pellets from oolite iron ore in solid-phase metallization. AIP Conf. Proc. 2022, 2456, 020054. [Google Scholar] [CrossRef]
- Mukashev, N.Z.; Kosdauletov, N.Y.; Suleimen, B.T. Comparison of iron and chromium reduction from chrome ore concentrates by solid carbon and carbon monoxide. Solid State Phenom. 2020, 299, 1152–1157. [Google Scholar] [CrossRef]
- Kosdauletov, N.Y.; Roshchin, V.E. Estimation of selective reduction of iron and phosphorus from manganese ores of different genesis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 966, 012036. [Google Scholar] [CrossRef]
- Kosdauletov, N.; Nurumgaliyev, A.; Zhautikov, B.; Suleimen, B.; Adilov, G.; Kelamanov, B.; Smirnov, K.; Zhuniskaliyev, T.; Kuatbay, Y.; Bulekova, G.; et al. Selective Reduction of Iron from Iron–Manganese Ore of the Keregetas Deposit Using Hydrogen. Metals 2025, 15, 691. [Google Scholar] [CrossRef]
- Smirnov, K.I.; Gamov, P.A.; Samolin, V.S.; Roshchin, V.E. Selective reduction of iron from ilmenite concentrate. Chernye Metally 2024, 7, 19–23. [Google Scholar] [CrossRef]
- Adilov, G.; Povolotskii, A.D.; Roshchin, V.E. Thermodynamic modeling of metal reduction in copper-smelting slags and experimental verification of its results. Izv. Ferrous Metall. 2022, 65, 581–589. [Google Scholar] [CrossRef]
- Suleimen, B.; Kosdauletov, N.; Adilov, G.; Gamov, P.; Salikhov, S.; Kuatbay, Y.; Zhuniskaliyev, T.; Kelamanov, B.; Yerzhanov, A.; Abdirashit, A. Selective Reduction of Iron in High-Phosphorus Oolitic Ore from the Lisakovsk Deposit. Materials 2024, 17, 5271. [Google Scholar] [CrossRef]
- Hasegawa, M. Ellingham diagram. In Treatise on Process Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 507–516. [Google Scholar]
- Roshchin, V.E.; Roshchin, A.V. Fizika Pirometallurgicheskikh Protsessov: Uchebnik [Physics of Pyrometallurgical Processes: Textbook]; Infra-Inzheneriya: Moscow, Russia; Vologda, Russia, 2021; 304p. [Google Scholar]
Temperature, (°C) | Mass of Magnetic Fraction, (g) | Mass of Non-Magnetic Fraction, (g) | Total Mass, (g) | Mass of Losses, (g) | Mass of Losses, (%) |
---|---|---|---|---|---|
600 | 12.55 | 3.71 | 16.26 | 3.74 | 18.70 |
700 | 10.88 | 4.64 | 15.52 | 4.48 | 22.40 |
800 | 14.51 | – | 14.52 | 5.49 | 27.45 |
900 | 14.98 | – | 14.98 | 5.02 | 25.10 |
Sample | Designation | O | Al | Si | P | Ca | Fe |
---|---|---|---|---|---|---|---|
600 °C (Figure 9a) | Section 1 | 23.8 | 5.4 | 5.0 | 1.2 | 0.4 | 64.2 |
700 °C (Figure 9b) | Point 1 | – | – | – | – | – | 100 |
700 °C (Figure 9b) | Point 2 | – | – | – | – | – | 100 |
700 °C (Figure 9b) | Section 3 | 25.8 | 6.9 | 5.9 | 1.4 | 0.4 | 59.6 |
Sample (Figure 10) | Designation | O | Mg | Al | Si | P | Ca | Cr | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|
800 °C (a) | Section 1 | – | – | – | – | 1.2 | – | – | – | 98.8 |
800 °C (b) | Section 1 | 20.1 | 1.2 | 9.7 | 6.0 | 1.6 | 0.5 | 0.3 | 0.5 | 60.1 |
Sample (Figure 11) | Designation | O | Mg | Al | Si | P | Ca | Cr | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|
900 °C (a) | Section 1 | – | – | – | – | 1.5 | – | – | 98.5 | – |
900 °C (b) | Section 1 | 41.6 | 1.2 | 13.8 | 19.2 | 4.1 | 2.1 | 0.4 | 18.2 | 41.6 |
Designation | O | Al | Si | P | Ca | Fe |
---|---|---|---|---|---|---|
Point 1 (Figure 12a) | - | - | - | 0.4 | - | 99.6 |
Point 2 (Figure 12a) | - | - | - | 0.5 | - | 99.5 |
Point 3 (Figure 12a) | 62.9 | - | - | 10.7 | - | 26.3 |
Point 4 (Figure 12a) | 64.1 | - | - | 11.5 | - | 24.4 |
Point 1 (Figure 12b) | 58.6 | - | - | - | - | 41.4 |
Point 2 (Figure 12b) | 63.5 | 20.2 | - | - | - | 16.3 |
Point 3 (Figure 12b) | 64.1 | - | 11.9 | - | - | 24.0 |
Point 4 (Figure 12b) | 68.7 | - | - | 12.3 | 9.3 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleimen, B.; Yerzhanov, A.; Kosdauletov, N.; Adilov, G.; Nurumgaliyev, A.; Pushanova, A.; Kelamanov, B.; Gamov, P.; Smirnov, K.; Zhuniskaliyev, T.; et al. Behavior of Phosphorus During Selective Reduction of Iron from Oolitic Ore and Separation of Reduction Products. Materials 2025, 18, 4051. https://doi.org/10.3390/ma18174051
Suleimen B, Yerzhanov A, Kosdauletov N, Adilov G, Nurumgaliyev A, Pushanova A, Kelamanov B, Gamov P, Smirnov K, Zhuniskaliyev T, et al. Behavior of Phosphorus During Selective Reduction of Iron from Oolitic Ore and Separation of Reduction Products. Materials. 2025; 18(17):4051. https://doi.org/10.3390/ma18174051
Chicago/Turabian StyleSuleimen, Bakyt, Almas Yerzhanov, Nurlybai Kosdauletov, Galymzhan Adilov, Assylbek Nurumgaliyev, Assemay Pushanova, Bauyrzhan Kelamanov, Pavel Gamov, Konstantin Smirnov, Talgat Zhuniskaliyev, and et al. 2025. "Behavior of Phosphorus During Selective Reduction of Iron from Oolitic Ore and Separation of Reduction Products" Materials 18, no. 17: 4051. https://doi.org/10.3390/ma18174051
APA StyleSuleimen, B., Yerzhanov, A., Kosdauletov, N., Adilov, G., Nurumgaliyev, A., Pushanova, A., Kelamanov, B., Gamov, P., Smirnov, K., Zhuniskaliyev, T., Kuatbay, Y., & Abdirashit, A. (2025). Behavior of Phosphorus During Selective Reduction of Iron from Oolitic Ore and Separation of Reduction Products. Materials, 18(17), 4051. https://doi.org/10.3390/ma18174051