On the Failure of Crankshafts in Thermoelectric Power Plants: Multiaxial Fatigue Analysis and a Comparative Survey on Crack Growth Threshold
Abstract
1. Introduction
2. Materials and Methods
2.1. Multiaxial Fatigue: Critical-Plane Stress-Based Models
2.1.1. Application Procedure
2.1.2. Estimating and
2.2. Determination of and Experimental Procedure
2.2.1. Precracking and Specimen Preparation
2.2.2. Fatigue Crack Growth Threshold Determination Procedure
3. Results and Discussion
3.1. Multiaxial Fatigue Analysis
3.2. Results Involving the Fatigue Crack Growth Threshold
3.3. Complementary Analysis Regarding the Impurity Content of the Materials
4. Conclusions
- The loading histories were applied to four critical plane-based high-cycle fatigue models, namely Findley (F), Matake (M), McDiarmid (McD) and Susmel and Lazzarin (S&L). The fatigue behaviour was assessed via error indices. In every single case, the models unanimously indicated that the stresses were not sufficient to drive the component to failure, thus indicating safety.
- Nevertheless, the error indices relative to the S&L criterion, while still indicating safety, were revealed to be higher in comparison to those delivered by the other models. Taking into consideration the loading conditions associated with the highest indices, an additional investigation was carried out with the purpose of assessing, in practice, how far the component was from failure. The analysis revealed that the S&L criterion would maintain its prediction of safety even if one were to double the magnitude of the involved stresses or to reduce the fatigue limits considered in this work by 50%. As such, one may conclude that these higher indices are associated with a certain conservativeness in the S&L criterion, thus supporting the perception that the stresses developed in the operation were adequate for this particular material.
- Experimental research was carried out to determine the crack growth thresholds of DIN 34CrNiMo6, as well as for three other commercially available steels, namely DIN 42CrMo4, SAE 4140 and SAE 4340. The results revealed that the steel from which the crankshaft was forged (DIN 34CrNiMo6) presented the lowest value of among all the considered steels, thus indicating that it has the least resistance to crack propagation and is therefore susceptible to a shorter fatigue life in comparison to the other considered steels.
- The research showed that the crankshaft failure was not caused by operating stresses or design errors. The evidence points to the importance of the of the impurity content in the material, which negatively impacts the nucleation and propagation of fatigue cracks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PUC-Rio. FINAL REPORT Project ENEVA S.A./ANEEL PD-07625-0011/2017, Structural Health of Crankshafts in Thermoelectric Industries; PUC-Rio: Rio de Janeiro, Brazil, 2022. (In Portuguese) [Google Scholar]
- Marquis, G.B.; Socie, D.F. Multiaxial Fatigue; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Liu, Y.; Mahadevan, S. Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue 2005, 27, 790–800. [Google Scholar] [CrossRef]
- Findley, W.N. A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. J. Eng. Ind. 1959, 81, 301–305. [Google Scholar] [CrossRef]
- Matake, T. Explanation on Fatigue Limit Under Combined Stress. Bull. JSME 1977, 20, 257–264. [Google Scholar] [CrossRef]
- McDiarmid, D.L. Fatigue Under Out-of-Phase Bending and Torsion. Fatigue Fract. Eng. Mater. Struct. 1987, 9, 457–475. [Google Scholar] [CrossRef]
- Susmel, L.; Lazzarin, P. A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 63–78. [Google Scholar] [CrossRef]
- Castro, T.L.; Araujo, L.C.; Pereira, M.V.; Darwish, F.A.; da Silva, G.A.; Araújo, J.A. Evaluation of finite high cycle fatigue life of hard steels using the elliptical curve method. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 3745–3765. [Google Scholar] [CrossRef]
- Peixoto, T.A.; Castro, T.L.; Pereira, M.V.; Darwish, F.A.; de Carvalho, B.F. A comparative study of the predictive capability of multiaxial stress-based fatigue criteria. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 588. [Google Scholar] [CrossRef]
- Castro, T.L.; Araujo, L.C.; Peixoto, T.A.; Carvalho, B.F.; Pereira, M.V.; Araújo, J.A. Assessment of multiaxial fatigue of crankshafts subjected to both designed and theoretically critical loadings. Procedia Struct. Integr. 2022, 39, 301–312. [Google Scholar] [CrossRef]
- Zabeu, C.B. Technical Report: Numerical Simulation of Bearing Loads of Wärtsilä 20V34SG Engine; Wärtsilä: Helsinki, Finland, 2013. [Google Scholar]
- Papadopoulos, I.V.; Davoli, P.; Gorla, C.; Filippini, M.; Bernasconi, A. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 1997, 19, 219–235. [Google Scholar] [CrossRef]
- Araújo, J.A.; Dantas, A.P.; Castro, F.C.; Mamiya, E.N.; Ferreira, J.L.A. On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. Int. J. Fatigue 2011, 33, 1092–1100. [Google Scholar] [CrossRef]
- Susmel, L. Multiaxial Notch Fatigue; Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Abasolo, M.; Pallares-Santasmartas, L.; Eizmendi, M. A New Critical Plane Multiaxial Fatigue Criterion with an Exponent to Account for High Mean Stress Effect. Metals 2024, 14, 964. [Google Scholar] [CrossRef]
- Pallarés-Santasmartas, L.; Albizuri, J.; Leguinagoicoa, N.; Saintier, N.; Merzeau, J. The effect of mean axial and torsional stresses on the fatigue strength of 34CrNiMo6 high strength steel. MATEC Web Conf. 2019, 300, 16004. [Google Scholar] [CrossRef]
- Schijve, J. Fatigue of Structures and Materials; Springer: Delft, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Dowling, N.E.; Prasad, K.S.; Narayanasamy, R. Mechanical Behavior of Materials, 4th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Dieter, G.E.; Bacon, D. Mechanical Metallurgy SI Metric Edition; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Bannantine, J.A.; Comer, J.J.; Handrock, J.L. Fundamentals of Metal Fatigue Analysis, 1st ed.; Pearson: London, UK, 1989. [Google Scholar]
- Pook, L. Metal Fatigue: What It Is, Why It Matters; Springer: London, UK, 2007. [Google Scholar]
- ASTM E647-24; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2014; pp. 1–52. [CrossRef]
- Roy, M.J.; Nadot, Y.; Nadot-Martin, C.; Bardin, P.G.; Maijer, D.M. Multiaxial Kitagawa analysis of A356-T6. Int. J. Fatigue 2011, 33, 823–832. [Google Scholar] [CrossRef]
- Sajith, S.; Murthy, K.S.R.K.; Robi, P.S. Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. Int. J. Fatigue 2020, 130, 105285. [Google Scholar] [CrossRef]
- ASTM E1820-11; Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2011; pp. 1–56. [CrossRef]
- ASTM E399-22; Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 1997; Volume 90, pp. 1–40. [CrossRef]
- ASTM E1290; Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement. ASTM International: West Conshohocken, PA, USA, 2003; Volume 3, pp. 1–13. [CrossRef]
Steel | Fe (%) | C (%) | Mn (%) | Si (%) | Cu (%) | Cr (%) | V (%) | Mo (%) | Ni (%) | Others (%) |
---|---|---|---|---|---|---|---|---|---|---|
DIN 34CrNiMo6 | 95.1 | 0.36 | 0.52 | 0.24 | -- | 1.50 | -- | 0.24 | 1.72 | 0.32 |
DIN 42CrMo4 | 96.9 | 0.38 | 0.85 | 0.27 | 0.18 | 0.97 | 0.01 | 0.2 | -- | 0.24 |
SAE 4140 | 97.1 | 0.42 | 0.86 | 0.26 | 0.01 | 1.06 | 0.0047 | 0.17 | 0.043 | 0.0723 |
SAE 4340 | 96.2 | 0.42 | 0.64 | 0.23 | 0.16 | 0.75 | 0.024 | 0.21 | 1.26 | 0.106 |
Steel | Hardness | ||
---|---|---|---|
DIN 34CrNiMo6 | 728 | 897 | 302 HV |
DIN 42CrMo4 | 689 | 861 | 320 HV |
SAE 4140 | 587 | 802 | 262 HB |
SAE 4340 | 675 | 845 | 277 HB |
Angular Position (°) or Time Units | ||||||
---|---|---|---|---|---|---|
0 | −8.02 | −6.52 | −42.69 | −4.58 | 48.56 | 28.07 |
1 | −8.15 | −7.00 | −43.87 | −4.64 | 47.09 | 27.60 |
2 | −8.29 | −7.48 | −45.08 | −4.71 | 45.68 | 27.15 |
3 | −8.44 | −7.97 | −46.32 | −4.78 | 44.35 | 26.75 |
4 | −8.59 | −8.45 | −47.60 | −4.85 | 43.09 | 26.39 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
715 | −7.45 | −4.16 | −37.22 | −4.31 | 56.62 | 30.86 |
716 | −7.55 | −4.62 | −38.26 | −4.36 | 54.95 | 30.27 |
717 | −7.66 | −5.09 | −39.32 | −4.41 | 53.30 | 29.69 |
718 | −7.77 | −5.56 | −40.41 | −4.47 | 51.66 | 29.12 |
719 | −7.77 | −5.56 | −40.41 | −4.47 | 51.66 | 29.12 |
Steel | ||||
---|---|---|---|---|
DIN 34CrNiMo6 | 50 | 12.5 | 10 | 40 |
DIN 42CrMo4 | 50 | 12.5 | 10 | 40 |
SAE 4140 | 40 | 10 | 8 | 32 |
SAE 4340 | 40 | 10 | 8 | 32 |
Steel | |||
---|---|---|---|
DIN 34CrNiMo6 | 20.12 | 1.998 | 0.10 |
DIN 42CrMo4 | 19.20 | 1.890 | 0.10 |
SAE 4140 | 13.65 | 1.353 | 0.10 |
SAE 4340 | 13.53 | 1.480 | 0.11 |
Loading Conditions | ||||
---|---|---|---|---|
A01 | −71 | −77 | −84 | −35 |
B01 | −80 | −81 | −82 | −79 |
A02 | −85 | −83 | −82 | −86 |
B02 | −76 | −74 | −81 | −42 |
A03 | −75 | −75 | −79 | −64 |
B03 | −67 | −77 | −79 | −72 |
A04 | −71 | −69 | −78 | −33 |
B04 | −78 | −80 | −81 | −79 |
A05 | −79 | −77 | −79 | −72 |
B05 | −69 | −78 | −82 | −63 |
A06 | −61 | −66 | −76 | −35 |
B06 | −55 | −63 | −74 | −28 |
A07 | −64 | −68 | −78 | −31 |
B07 | −71 | −74 | −81 | −38 |
A08 | −67 | −71 | −80 | −27 |
B08 | −73 | −73 | −81 | −32 |
A09 | −75 | −78 | −85 | −40 |
B09 | −70 | −72 | −80 | −34 |
A10 | −67 | −69 | −78 | −38 |
B10 | −54 | −58 | −71 | −24 |
20,120 | 1998 | 1.6 | 1.0 | 9000 | 31.07 | 1.11 × 10−4 |
18,450 | 1890 | 2.6 | 0.7 | 6250 | 29.34 | 1.12 × 10−4 |
16,790 | 1653 | 3.3 | 0.65 | 7220 | 27.84 | 9.00 × 10−5 |
15,200 | 1517 | 3.95 | 0.6 | 5076 | 26.05 | 1.18 × 10−4 |
13,290 | 1355 | 4.55 | 0.55 | 5810 | 23.45 | 9.47 × 10−5 |
11,790 | 1147 | 5.1 | 0.45 | 6580 | 21.51 | 6.84 × 10−5 |
10,550 | 1047 | 5.55 | 0.45 | 5650 | 19.66 | 7.96 × 10−5 |
9441 | 945 | 6 | 0.45 | 6590 | 17.99 | 6.83 × 10−5 |
8345 | 830 | 6.45 | 0.35 | 9300 | 16.28 | 3.76 × 10−5 |
7500 | 743 | 6.8 | 0.3 | 6500 | 14.91 | 4.62 × 10−5 |
6750 | 685 | 7.1 | 0.35 | 7180 | 13.59 | 4.87 × 10−5 |
6095 | 609 | 7.45 | 0.3 | 6010 | 12.51 | 4.99 × 10−5 |
5475 | 558 | 7.75 | 0.3 | 5440 | 11.39 | 5.51 × 10−5 |
4937 | 496 | 8.05 | 0.25 | 5660 | 10.45 | 4.42 × 10−5 |
4499 | 444 | 8.3 | 0.25 | 6483 | 9.66 | 3.86 × 10−5 |
3954 | 393 | 8.55 | 0.15 | 6850 | 8.60 | 2.19 × 10−5 |
3614 | 363 | 8.7 | 0.05 | 7085 | 7.91 | 7.06 × 10−6 |
3245 | 325 | 8.75 | 0.05 | 7310 | 7.12 | 6.84 × 10−6 |
2920 | 302 | 8.8 | 0 | 100,010 | 6.40 | 0 |
3002 | 301 | 8.8 | 0 | 100,000 | 6.60 | 0 |
Steel | Impurity Content (particles/mm2) | |
---|---|---|
DIN 34CrNiMo6 | 6.60 | 550 |
DIN 42CrMo4 | 10.86 | 95 |
SAE 4140 | 12.38 | 125 |
SAE 4340 | 7.22 | 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, T.L.; Peixoto, T.A.; Alves, J.A.; Pereira, M.V.
On the Failure of Crankshafts in Thermoelectric Power Plants: Multiaxial Fatigue Analysis and a Comparative Survey on Crack Growth Threshold
Castro TL, Peixoto TA, Alves JA, Pereira MV.
On the Failure of Crankshafts in Thermoelectric Power Plants: Multiaxial Fatigue Analysis and a Comparative Survey on Crack Growth Threshold
Castro, Tiago Lima, Thiago Abreu Peixoto, João Araujo Alves, and Marcos Venicius Pereira.
2025. "On the Failure of Crankshafts in Thermoelectric Power Plants: Multiaxial Fatigue Analysis and a Comparative Survey on Crack Growth Threshold
Castro, T. L., Peixoto, T. A., Alves, J. A., & Pereira, M. V.
(2025). On the Failure of Crankshafts in Thermoelectric Power Plants: Multiaxial Fatigue Analysis and a Comparative Survey on Crack Growth Threshold