Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth of Nanowires
2.2. Characterizations of Morphological and Optical Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Wu, J.; Aagesen, M.; Liu, H. III–V Nanowires and Nanowire Optoelectronic Devices. J. Phys. D Appl. Phys. 2015, 48, 463001. [Google Scholar] [CrossRef]
- Kang, Y.; Hou, X.; Zhang, Z.; Meng, B.; Tang, J.; Hao, Q.; Wei, Z. Enhanced Visible-NIR Dual-Band Performance of GaAs Nanowire Photodetectors Through Phase Manipulation. Adv. Opt. Mater. 2025, 13, 2500289. [Google Scholar] [CrossRef]
- Barettin, D.; Shtrom, I.V.; Reznik, R.R.; Mikushev, S.V.; Cirlin, G.E.; Auf Der Maur, M.; Akopian, N. Direct Band Gap AlGaAs Wurtzite Nanowires. Nano Lett. 2023, 23, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Koblmüller, G.; Abstreiter, G. Growth and Properties of InGaAs Nanowires on Silicon. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2014, 8, 11–30. [Google Scholar] [CrossRef]
- Kang, H.-K.; Kim, J.Y.; Noh, M.-S.; Kang, C.-Y.; Kim, Y.D.; Cho, M.-H.; Song, J.D. Growth of Pure Wurtzite InGaAs Nanowires for Photovoltaic and Energy Harvesting Applications. Nano Energy 2018, 53, 57–65. [Google Scholar] [CrossRef]
- Qu, J.; Du, S.; Burgess, T.; Wang, C.; Cui, X.; Gao, Q.; Wang, W.; Tan, H.H.; Liu, H.; Jagadish, C.; et al. 3D Atomic-Scale Insights into Anisotropic Core–Shell-Structured InGaAs Nanowires Grown by Metal–Organic Chemical Vapor Deposition. Adv. Mater. 2017, 29, 1701888. [Google Scholar] [CrossRef]
- Johansson, J.; Ghasemi, M. Composition of Gold Alloy Seeded InGaAs Nanowires in the Nucleation Limited Regime. Cryst. Growth Des. 2017, 17, 1630–1635. [Google Scholar] [CrossRef]
- Ameruddin, A.S.; Fonseka, H.A.; Caroff, P.; Wong-Leung, J.; Op Het Veld, R.L.; Boland, J.L.; Johnston, M.B.; Tan, H.H.; Jagadish, C. InxGa1−xAs Nanowires with Uniform Composition, Pure Wurtzite Crystal Phase and Taper-Free Morphology. Nanotechnology 2015, 26, 205604. [Google Scholar] [CrossRef]
- Wu, J.; Borg, B.M.; Jacobsson, D.; Dick, K.A.; Wernersson, L.-E. Control of Composition and Morphology in InGaAs Nanowires Grown by Metalorganic Vapor Phase Epitaxy. J. Cryst. Growth 2013, 383, 158–165. [Google Scholar] [CrossRef]
- Kim, Y.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C.; Paladugu, M.; Zou, J.; Suvorova, A.A. Influence of Nanowire Density on the Shape and Optical Properties of Ternary InGaAs Nanowires. Nano Lett. 2006, 6, 599–604. [Google Scholar] [CrossRef]
- Shin, J.C.; Kim, D.Y.; Lee, A.; Kim, H.J.; Kim, J.H.; Choi, W.J.; Kim, H.-S.; Choi, K.J. Improving the Composition Uniformity of Au-Catalyzed InGaAs Nanowires on Silicon. J. Cryst. Growth 2013, 372, 15–18. [Google Scholar] [CrossRef]
- Joyce, H.J.; Gao, Q.; Wong-Leung, J.; Kim, Y.; Tan, H.H.; Jagadish, C. Tailoring GaAs, InAs, and InGaAs Nanowires for Optoelectronic Device Applications. IEEE J. Select. Topics Quantum Electron. 2011, 17, 766–778. [Google Scholar] [CrossRef]
- Heiss, M.; Ketterer, B.; Uccelli, E.; Morante, J.R.; Arbiol, J.; Morral, A.F.I. In(Ga)As Quantum Dot Formation on Group-III Assisted Catalyst-Free InGaAs Nanowires. Nanotechnology 2011, 22, 195601. [Google Scholar] [CrossRef]
- Heiß, M.; Gustafsson, A.; Conesa-Boj, S.; Peiró, F.; Morante, J.R.; Abstreiter, G.; Arbiol, J.; Samuelson, L.; Fontcuberta, I.; Morral, A. Catalyst-Free Nanowires with Axial InxGa1−xAs/GaAs Heterostructures. Nanotechnology 2009, 20, 075603. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Zhang, X.; Wu, C.; Zheng, J.; Zha, C.; Fu, T.; Gong, L.; Ren, X. Low-Threshold Miniaturized Core-Shell GaAs/InGaAs Nanowire/Quantum-Dot Hybrid Structure Nanolasers. Opt. Laser Technol. 2022, 152, 108150. [Google Scholar] [CrossRef]
- Fotev, I.; Balaghi, L.; Schmidt, J.; Schneider, H.; Helm, M.; Dimakis, E.; Pashkin, A. Electron Dynamics in InxGa1−xAs Shells around GaAs Nanowires Probed by Terahertz Spectroscopy. Nanotechnology 2019, 30, 244004. [Google Scholar] [CrossRef] [PubMed]
- Grönqvist, J.; Søndergaard, N.; Boxberg, F.; Guhr, T.; Åberg, S.; Xu, H.Q. Strain in Semiconductor Core-Shell Nanowires. J. Appl. Phys. 2009, 106, 053508. [Google Scholar] [CrossRef]
- Glas, F. Chapter Two–Strain in Nanowires and Nanowire Heterostructures. Semicond. Semimet. 2015, 93, 79–123. [Google Scholar] [CrossRef]
- Dimoulas, A.; Derekis, A.; Kyriakidis, G.; Christou, A. Alloy Disorder Effects in III–V Ternaries Studied by Modulation Spectroscopy. Appl. Surf. Sci. 1991, 50, 353–358. [Google Scholar] [CrossRef]
- Moratis, K.; Tan, S.L.; Germanis, S.; Katsidis, C.; Androulidaki, M.; Tsagaraki, K.; Hatzopoulos, Z.; Donatini, F.; Cibert, J.; Niquet, Y.-M.; et al. Strained GaAs/InGaAs Core-Shell Nanowires for Photovoltaic Applications. Nanoscale Res. Lett. 2016, 11, 176. [Google Scholar] [CrossRef]
- Shen, H.; Yuan, H.; Niu, J.Z.; Xu, S.; Zhou, C.; Ma, L.; Li, L.S. Phosphine-Free Synthesis of High-Quality Reverse Type-I ZnSe/CdSe Core with CdS/CdxZn1−xS/ZnS Multishell Nanocrystals and Their Application for Detection of Human Hepatitis B Surface Antigen. Nanotechnology 2011, 22, 375602. [Google Scholar] [CrossRef]
- Shu, A.; Qin, C.; Li, M.; Zhao, L.; Shangguan, Z.; Shu, Z.; Yuan, X.; Zhu, M.; Wu, Y.; Wang, H. Electric Effects Reinforce Charge Carrier Behaviour for Photocatalysis. Energy Environ. Sci. 2024, 17, 4907–4928. [Google Scholar] [CrossRef]
- Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; Krasheninnikov, A.V.; Schneider, H.; Helm, M.; Dimakis, E. Widely Tunable GaAs Bandgap via Strain Engineering in Core/Shell Nanowires with Large Lattice Mismatch. Nat. Commun. 2019, 10, 2793. [Google Scholar] [CrossRef] [PubMed]
- Anyebe, E.A. Recent Progress on the Gold-Free Integration of Ternary III–As Antimonide Nanowires Directly on Silicon. Nanomaterials 2020, 10, 2064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yates, J.T. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Shen, L.; Qian, H.; Yang, Y.; Ma, Y.; Deng, J.; Zhang, Y. Photoresponse Improvement of InGaAs Nanowire Near-Infrared Photodetectors with Self-Assembled Monolayers. J. Phys. Chem. C 2023, 127, 11328–11337. [Google Scholar] [CrossRef]
- Goktas, N.I.; Dubrovskii, V.G.; LaPierre, R.R. Conformal Growth of Radial InGaAs Quantum Wells in GaAs Nanowires. J. Phys. Chem. Lett. 2021, 12, 1275–1283. [Google Scholar] [CrossRef]
- Kang, Y.; Hou, X.; Zhang, Z.; Tang, J.; Lin, F.; Li, K.; Hao, Q.; Wei, Z. Ultrahigh-Performance and Broadband Photodetector from Visible to Shortwave Infrared Band Based on GaAsSb Nanowires. Chem. Eng. J. 2024, 501, 157392. [Google Scholar] [CrossRef]
- Zhuang, X.; Ning, C.Z.; Pan, A. Composition and Bandgap-Graded Semiconductor Alloy Nanowires. Adv. Mater. 2012, 24, 13–33. [Google Scholar] [CrossRef]
- Pan, A.; Nichols, P.L.; Ning, C.Z. Semiconductor Alloy Nanowires and Nanobelts With Tunable Optical Properties. IEEE J. Select. Topics Quantum Electron. 2011, 17, 808–818. [Google Scholar] [CrossRef]
- Wang, P.; Meng, B.; Kang, Y.; Liu, H.; Hou, X.; Tang, J.; Hao, Q.; Wei, Z.; Chen, R. Carrier Recombination and Surface Band Bending in GaAs/InGaAs Core–Shell Nanowires with Reverse Type-I Band Alignment. J. Phys. Chem. C 2025, 129, 7567–7576. [Google Scholar] [CrossRef]
- Azimi, Z.; Gopakumar, A.; Ameruddin, A.S.; Li, L.; Truong, T.; Nguyen, H.T.; Tan, H.H.; Jagadish, C.; Wong-Leung, J. Tuning the Crystal Structure and Optical Properties of Selective Area Grown InGaAs Nanowires. Nano Res. 2022, 15, 3695–3703. [Google Scholar] [CrossRef]
- Kang, Y.; Hou, X.; Tang, J.; Chu, X.; Li, K.; Lin, F.; Jia, H.; Wang, X.; Wei, Z. Synthesis and Characterization of Kinked GaAs Nanowires by Sb Surfactant. Vacuum 2022, 196, 110778. [Google Scholar] [CrossRef]
- Meisner, L.L.; Lotkov, A.I.; Ostapenko, M.G.; Gudimova, E.Y. X-Ray Diffraction Study of Residual Elastic Stress and Microstructure of near-Surface Layers in Nickel-Titanium Alloy Irradiated with Low-Energy High-Current Electron Beams. Appl. Surf. Sci. 2013, 280, 398–404. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, W.; Zhang, H.; Zheng, F.; Zhang, M.; Hu, P.; Wang, M.; Tian, Z.; Li, Y.; et al. Phase Transition and Bandgap Engineering in B1-Al N Alloys: DFT Calculations and Experiments. Appl. Surf. Sci. 2022, 575, 151641. [Google Scholar] [CrossRef]
- Lv, H.; Huo, C.; Zhang, K.; Hao, Q.; Chen, M. In-Situ Grown Polymer-Ceramic Scintillator and Applications on X-Ray Multi-Energy Curved Surface Imaging. PhotoniX 2025, 6, 23. [Google Scholar] [CrossRef]
- Mansfield, M. A Unique Hot Jupiter Spectral Sequence with Evidence for Compositional Diversity. Nat. Astron. 2021, 5, 1224–1232. [Google Scholar] [CrossRef]
- Bergman, L.; Chen, X.-B.; Morrison, J.L.; Huso, J.; Purdy, A.P. Photoluminescence Dynamics in Ensembles of Wide-Band-Gap Nanocrystallites and Powders. J. Appl. Phys. 2004, 96, 675–682. [Google Scholar] [CrossRef]
- Chen, R.; Ye, Q.-L.; He, T.; Ta, V.D.; Ying, Y.; Tay, Y.Y.; Wu, T.; Sun, H. Exciton Localization and Optical Properties Improvement in Nanocrystal-Embedded ZnO Core–Shell Nanowires. Nano Lett. 2013, 13, 734–739. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Wei, T.; Yang, W.; Jin, S.; Wu, Y.; Lu, S. Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy. Crystals 2021, 11, 1590. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Wang, H.; Wang, J.; Wang, D. Study on the Influence of Variable Temperature Growth on the Properties of Highly Strained InGaAs/GaAs MQWs Grown by MOCVD. J. Alloys Compd. 2023, 937, 168075. [Google Scholar] [CrossRef]
- Latkowska, M.; Kudrawiec, R.; Janiak, F.; Motyka, M.; Misiewicz, J.; Zhuang, Q.; Krier, A.; Walukiewicz, W. Temperature Dependence of Photoluminescence from InNAsSb Layers: The Role of Localized and Free Carrier Emission in Determination of Temperature Dependence of Energy Gap. Appl. Phys. Lett. 2013, 102, 122109. [Google Scholar] [CrossRef]
- Chen, R.; Phann, S.; Sun, H.D.; Zhuang, Q.; Godenir, A.M.R.; Krier, A. Photoluminescence Properties of Midinfrared Dilute Nitride InAsN Epilayers with/without Sb Flux during Molecular Beam Epitaxial Growth. Appl. Phys. Lett. 2009, 95, 261905. [Google Scholar] [CrossRef]
- Hidouri, T.; Parisini, A.; Ferrari, C.; Orsi, D.; Baraldi, A.; Vantaggio, S.; Nasr, S.; Bosio, A.; Pavesi, M.; Saidi, F.; et al. Combined Impact of B2H6 Flow and Growth Temperature on Morphological, Structural, Optical, and Electrical Properties of MOCVD-Grown B(In)GaAs Heterostructures Designed for Optoelectronics. Appl. Surf. Sci. 2022, 577, 151884. [Google Scholar] [CrossRef]
- Goetz, K.-H.; Bimberg, D.; Jürgensen, H.; Selders, J.; Solomonov, A.V.; Glinskii, G.F.; Razeghi, M. Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44<x<0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition. J. Appl. Phys. 1983, 54, 4543–4552. [Google Scholar] [CrossRef]
- Tsang, J.S.; Lee, C.P.; Lee, S.H.; Tsai, K.L.; Tsai, C.M.; Fan, J.C. Compositional Disordering of InGaAs/GaAs Heterostructures by Low-Temperature-Grown GaAs Layers. J. Appl. Phys. 1996, 79, 664–670. [Google Scholar] [CrossRef]
- Choubani, M.; Maaref, H.; Saidi, F. Indium Segregation and In–Ga Inter-Diffusion Effects on the Photoluminescence Measurements and Nonlinear Optical Properties in Lens-Shaped InxGa1-xAs/GaAs Quantum Dots. J. Phys. Chem. Solids 2022, 160, 110360. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chi, C.-Y.; Yao, M.; Huang, N.; Chen, C.-C.; Theiss, J.; Bushmaker, A.W.; LaLumondiere, S.; Yeh, T.-W.; Povinelli, M.L.; et al. Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires. Nano Lett. 2012, 12, 4484–4489. [Google Scholar] [CrossRef]
- Oye, M.M.; Govindaraju, S.; Sidhu, R.; Reifsnider, J.M.; Holmes, A.L. Diffusion Mechanisms of Indium and Nitrogen during the Annealing of InGaAs Quantum Wells with GaNAs Barriers and GaAs Spacer Layers. Appl. Phys. Lett. 2005, 86, 151903. [Google Scholar] [CrossRef]
- Chen, R.; Tay, Y.; Ye, J.; Zhao, Y.; Xing, G.; Wu, T.; Sun, H. Investigation of Structured Green-Band Emission and Electron−Phonon Interactions in Vertically Aligned ZnO Nanowires. J. Phys. Chem. C 2010, 114, 17889–17893. [Google Scholar] [CrossRef]
- Poças, L.C.; Lopes, E.M.; Duarte, J.L.; Dias, I.F.L.; Lourenço, S.A.; Laureto, E.; Valadares, M.; Guimarães, P.S.S.; Cury, L.A.; Harmand, J.C. The Effect of Potential Fluctuations on the Optical Properties of InGaAs/InAlAs Superlattices. J. Appl. Phys. 2005, 97, 103518. [Google Scholar] [CrossRef]
- Nag, D.; Sarkar, R.; Bhunia, S.; Aggarwal, T.; Ghosh, K.; Sinha, S.; Ganguly, S.; Saha, D.; Horng, R.-H.; Laha, A. Role of Defect Saturation in Improving Optical Response from InGaN Nanowires in Higher Wavelength Regime. Nanotechnology 2020, 31, 495705. [Google Scholar] [CrossRef]
- Wei, S.-H.; Zunger, A. Calculated Natural Band Offsets of All II–VI and III–V Semiconductors: Chemical Trends and the Role of Cation d Orbitals. Appl. Phys. Lett. 1998, 72, 2011–2013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liu, H.; Kang, Y.; Tang, J.; Hao, Q.; Wei, Z. Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment. Materials 2025, 18, 4030. https://doi.org/10.3390/ma18174030
Wang P, Liu H, Kang Y, Tang J, Hao Q, Wei Z. Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment. Materials. 2025; 18(17):4030. https://doi.org/10.3390/ma18174030
Chicago/Turabian StyleWang, Puning, Huan Liu, Yubin Kang, Jilong Tang, Qun Hao, and Zhipeng Wei. 2025. "Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment" Materials 18, no. 17: 4030. https://doi.org/10.3390/ma18174030
APA StyleWang, P., Liu, H., Kang, Y., Tang, J., Hao, Q., & Wei, Z. (2025). Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment. Materials, 18(17), 4030. https://doi.org/10.3390/ma18174030