A Study on the Microstructure and Properties of CoCr Alloy Deposited Via Arc Deposition on a Single-Crystal Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Characteristics of Three Types of Welding Wires
3.1.1. S1 Welding Wire
3.1.2. S6 and S12 Welding Wires
3.2. Influence of Welding Wire on Microstructure of the Deposited Layer
3.2.1. Microstructure of S1 Welding Wire
3.2.2. S6 Welding Wire
3.2.3. S12 Welding Wire
3.3. Microhardness Distribution of Different Welding Wire Layers
3.4. Friction and Wear Performance of Different Deposited Layers
3.5. Tensile Properties of Three Different Welding Wire Overlay Joints
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, X.-F.; Zhao, Y.-T.; Jia, Z.-H.; Zhang, C. Preparation and tensile properties of DD5 single crystal castings. Int. J. Miner. Metall. Mater. 2016, 23, 683–690. [Google Scholar] [CrossRef]
- Ma, S.; Cao, L.; Wang, X.; Zhuang, X. Influence of Heat Process on Microstructure and Mechanical Properties of DD5 Single Crystal Superalloy During Manufacturing. J. Mater. Eng. Perform. 2025, 34, 5339–5346. [Google Scholar] [CrossRef]
- Abraimov, N.V.; Lukina, V.V.; Ivanova, A.Y. Technology for the Deposition of Wear-Resistant Coatings on the Airfoil Shroud Platforms of GTE Turbine Blades. Russ. Metall. (Met.) 2019, 2019, 608–616. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Li, H.; Cui, H.; Han, P.; Zhao, D.; Li, S.; Li, Y.; Huang, S.; Zhang, H. High-temperature plasticity improvement by La addition during crack inhibition in laser powder bed fusion fabricated Haynes 230. Virtual Phys. Prototyp. 2025, 20, e2504079. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, N.; Tong, Z.; Zhou, Z. The Effect of Fe/Al Ratio and Substrate Hardness on Microstructure and Deposition Behavior of Cold-Sprayed Fe/Al Coatings. Materials 2023, 16, 878. [Google Scholar] [CrossRef]
- Ghadimi, H.; Ding, H.; Emanet, S.; Talachian, M.; Cox, C.; Eller, M.; Guo, S. Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition. Materials 2023, 16, 1278. [Google Scholar] [CrossRef]
- Wei, X.; Hong, H.; Dai, F.; Zhang, C. Microstructure, fracture toughness and cavitation behavior of plasma-sprayed Fe-based amorphous coating by annealing treatment and laser remelting. Surf. Coat. Technol. 2025, 513, 132460. [Google Scholar] [CrossRef]
- Li, K.; Shao, L.; Li, W.; Shang, L.; Li, R.; Zhang, Y.; Song, Q.; Wang, C.; Zhang, C. Superior wear resistance of CrN film by PVD/HVOF structure design. Tribol. Int. 2025, 209, 110753. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, W.; Bian, H.; Xi, W.; Zhang, K.; Wang, H. A novel approach to enhance the wear resistance of laser-cladded Tribaloy T-800 coatings on DD5 single crystal alloys by addition of Si. Mater. Charact. 2025, 221, 114728. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, W.; Bian, H.; Xi, W.; Zao, Y.; Zhang, K.; Wang, H. Influence mechanisms of Y2O3 addition on the microstructure and wear resistance of laser-cladded T-800 + Si coatings on DD5 substrates. Surf. Coat. Technol. 2025, 503, 132025. [Google Scholar] [CrossRef]
- Shi, J.; Guo, W.; Zhang, Y.; Zhang, C.; Xue, J.; Qu, G.; Wang, B.; Zhang, H. Laser shock induced microstructure strengthening evolution and phase transformation of titanium alloy. Mater. Sci. Eng. A 2025, 943, 148763. [Google Scholar] [CrossRef]
- Yoo, S.-W.; Lee, C.-M.; Kim, D.-H. Effect of Functionally Graded Material (FGM) Interlayer in Metal Additive Manufacturing of Inconel-Stainless Bimetallic Structure by Laser Melting Deposition (LMD) and Wire Arc Additive Manufacturing (WAAM). Materials 2023, 16, 535. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Liu, F.; Guo, X.; Wang, Z.; Yu, D.; Tian, Q. Clean recycling of spent nickel-based single-crystal superalloy by molten magnesium. J. Mater. Res. Technol. 2024, 30, 3960–3966. [Google Scholar] [CrossRef]
- Gong, Q.; Cai, M.; Gong, Y.; Chen, M.; Zhu, T.; Liu, Q. Grinding surface and subsurface stress load of nickel-based single crystal superalloy DD5. Precis. Eng. 2024, 88, 354–366. [Google Scholar] [CrossRef]
- Balbande, S.; Rai, S.; Agarwal, G.; Das, S. Effect of TIG-arcing speed on the microstructure vis-à-vis mechanical behaviour of surface modified low carbon steel. Wear 2025, 570, 205924. [Google Scholar] [CrossRef]
- Ditenberg, I.A.; Smirnov, I.V.; Osipov, D.A.; Grinyaev, K.V. Structural-phase state and microhardness of the surfacing formed on a steel substrate by pulsed argon tungsten arc remelting of Cu-tube containing W-Ta-Mo-Nb-Zr-Cr-Ti powder mixture. Intermetallics 2025, 179, 108639. [Google Scholar] [CrossRef]
- Chen, M.; Yang, H.; Song, Z.; Zhou, F.; Shen, W.; Zhang, L. Development path prediction of local arc over the wet contaminated insulator surface based on random walk theory. Electr. Power Syst. Res. 2025, 241, 111353. [Google Scholar] [CrossRef]
- Xue, J.; Guo, W.; Xia, M.; Tan, C.; Shi, J.; Zhang, Y.; Wan, Z.; Li, Y.; Zhang, H. In-situ precipitation of carbides significantly enhances the hydrogen embrittlement resistance of advanced high-strength steels welded joints. Corros. Sci. 2025, 245, 112697. [Google Scholar] [CrossRef]
- Zhu, Y.-Z.; Yin, Z.-M.; Teng, H. Plasma cladding of Stellite 6 powder on Ni76Cr19AlTi exhausting valve. Trans. Nonferrous Met. Soc. China 2007, 17, 35–40. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Yu, J.; Zhang, Y.; Wang, F.; Li, H. Effect of the macro-segregation on corrosion behavior of CrMnFeCoNi coating prepared by arc cladding. J. Alloys Compd. 2020, 846, 156263. [Google Scholar] [CrossRef]
- Egerland, S.; Zimmer, J.; Brunmaier, R.; Nussbaumer, R.; Posch, G.; Rutzinger, B. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application. Soldag. Inspeção 2015, 20, 300–314. [Google Scholar] [CrossRef]
- Wu, Y.; Schmitt, T.; Bousser, E.; Vernhes, L.; Khelfaoui, F.; Perez, G.; Klemberg-Sapieha, J.-E.; Brochu, M. Microstructural and mechanical characterization of Stellite-hardfaced coatings with two types of buffer layers. Surf. Coat. Technol. 2020, 390, 125611. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, H.; Wang, H.; Li, Y.; Liu, X.; He, G. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel. Metall. Mater. Trans. A 2017, 48, 4356–4364. [Google Scholar] [CrossRef]
- Liu, X.; Meng, L.; Zeng, X.; Zhu, B.; Wei, K.; Cao, J.; Hu, Q. Studies on high power laser cladding Stellite 6 alloy coatings: Metallurgical quality and mechanical performances. Surf. Coat. Technol. 2024, 481, 130647. [Google Scholar] [CrossRef]
- Durejko, T.; Łazińska, M. Characterization of Cobalt-Based Stellite 6 Alloy Coating Fabricated by Laser-Engineered Net Shaping (LENS). Materials 2021, 14, 7442. [Google Scholar] [CrossRef]
- Bharath, R.R.; Ramanathan, R.; Sundararajan, B.; Srinivasan, P.B. Optimization of process parameters for deposition of Stellite on X45CrSi93 steel by plasma transferred arc technique. Mater. Des. 2008, 29, 1725–1731. [Google Scholar] [CrossRef]
- Ciubotariu, C.-R.; Frunzăverde, D.; Mărginean, G.; Șerban, V.-A.; Bîrdeanu, A.-V. Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings. Opt. Laser Technol. 2016, 77, 98–103. [Google Scholar] [CrossRef]
- Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; He, R.; Gong, Y.; Miao, X. Effect of CeO2 Addition on Grain Refinement and Mechanical Properties of Stellite-6 Coating Fabricated by Laser Cladding. J. Therm. Spray Technol. 2022, 31, 2621–2634. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Koopman, M.; Butler, B.; Paramore, J.; Middlemas, S. Methods for improving ductility of tungsten—A review. Int. J. Refract. Met. Hard Mater. 2018, 75, 170–183. [Google Scholar] [CrossRef]
- ASME BPVC.IX-2023; ASME Boiler and Pressure Vessel Code, Section IX: Welding, Brazing, and Fusing Qualifications. The American Society of Mechanical Engineers: New York, NY, USA, 1 July 2023.
- Liu, R.; Yao, J.H.; Zhang, Q.L.; Yao, M.X.; Collier, R. Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy. Wear 2015, 322–323, 41–50. [Google Scholar] [CrossRef]
- Aprameya, C.R.; Joladarashi, S.; Ramesh, M.R. Surface enhancement of SS304 for high-temperature wear resistance using laser cladded Mo-alloyed stellite 6 coatings. Surf. Coat. Technol. 2025, 513, 132457. [Google Scholar] [CrossRef]
- Peng, Y.; Du, Y.; Zhang, Y.; Ma, W.; Liang, Q. Effect of solution treatment on microstructure and mechanical properties of laser-cladded Stellite 6 coatings on 2507 duplex stainless steel. Mater. Today Commun. 2025, 46, 112795. [Google Scholar] [CrossRef]
- Ates, S.; Aslan, O.; Tümer, M.; Arisoy, C.F. Impact sliding wear behavior of Stellite 6 and Stellite 12 hardfacings. Mater. Chem. Phys. 2024, 313, 128762. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Y.; Xing, X.; Wang, J.; Ren, X.; Yang, Q. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy. Sci. Rep. 2016, 6, 32941. [Google Scholar] [CrossRef]
- Goodarzi, D.M.; Pekkarinen, J.; Salminen, A. Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape. J. Laser Appl. 2015, 27, S29201. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.H.; Kwon, H.S.; Kim, G.S.; Lee, C.S. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance. Mater. Des. 2014, 64, 559–565. [Google Scholar] [CrossRef]
- Prakash, A.; Shahi, A.S. Investigations on high temperature wear and metallurgical characteristics of Stellite 6 GTA (Gas Tungsten Arc) weld claddings. Mater. Res. Express 2020, 7, 026509. [Google Scholar] [CrossRef]
- Trivedi, R.; Somboonsuk, K. Pattern formation during the directional solidification of binary systems. Acta Metall. 1985, 33, 1061–1068. [Google Scholar] [CrossRef]
- Renz, A.; Prakash, B.; Hardell, J.; Lehmann, O. High-temperature sliding wear behaviour of Stellite®12 and Tribaloy®T400. Wear 2018, 402–403, 148–159. [Google Scholar] [CrossRef]
- Wu, Y.; Bousser, E.; Schmitt, T.; Tarfa, N.; Khelfaoui, F.; René, R.; Klemberg-Sapieha, J.-E.; Brochu, M. Thermal stability of a Stellite/steel hardfacing interface during long-term aging. Mater. Charact. 2019, 154, 181–192. [Google Scholar] [CrossRef]
- Chen, B.; Chen, R.; Fan, Y.; Chen, Z.; Zhao, Z. Microstructural characterization of Stellite 6 alloy processed by electron beam melting. Vacuum 2024, 229, 113591. [Google Scholar] [CrossRef]
Co | W | C | Cr | Ni | Fe | Mn | Mo | Si | Melting Point | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | Bal. | 11.78 | 1.97 | 28.26 | 1.94 | 0.56 | 0.16 | 0.22 | 0.64 | 1248~1290 °C |
S6 | Bal. | 4.86 | 1.14 | 28.78 | 2 | 1.97 | 0.36 | 0.45 | 1.28 | 1250~1360 °C |
S12 | Bal. | 8.67 | 1.5 | 29.4 | 2.62 | 2.61 | 0.27 | 0.55 | 1.2 | 1225~1280 °C |
Element | Point 1 | Point 2 | Point 3 |
---|---|---|---|
Cr | 67 | 26.91 | 23.2 |
Fe | 0.45 | 0.58 | 0.69 |
Co | 29.33 | 53.13 | 69.83 |
Ni | 0.75 | 1.63 | 2.39 |
Mo | 0.1 | 0.72 | 0.14 |
W | 2.38 | 17.03 | 3.75 |
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | |
---|---|---|---|---|---|---|
Cr | 76.7 | 28 | 28.98 | 30.43 | 70.23 | 26.62 |
Fe | 0.92 | 2.25 | 2.18 | 1.82 | 1.55 | 3.15 |
Co | 20.41 | 64.99 | 63.48 | 47.56 | 24.79 | 63.56 |
Ni | 0.36 | 2.09 | 2.12 | 2.44 | 0.95 | 3.02 |
Mo | 0.3 | 0.3 | 0.7 | 1.72 | 0.33 | 0.28 |
W | 1.3 | 2.37 | 2.53 | 16.02 | 2.15 | 3.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, T.; Miao, J.; Wang, C.; Liu, W.; Zhang, G.; Chen, B.; Zhou, B. A Study on the Microstructure and Properties of CoCr Alloy Deposited Via Arc Deposition on a Single-Crystal Alloy. Materials 2025, 18, 3994. https://doi.org/10.3390/ma18173994
Huang S, Wang T, Miao J, Wang C, Liu W, Zhang G, Chen B, Zhou B. A Study on the Microstructure and Properties of CoCr Alloy Deposited Via Arc Deposition on a Single-Crystal Alloy. Materials. 2025; 18(17):3994. https://doi.org/10.3390/ma18173994
Chicago/Turabian StyleHuang, Shuai, Tianyuan Wang, Jian Miao, Cheng Wang, Wei Liu, Guohui Zhang, Bingqing Chen, and Biao Zhou. 2025. "A Study on the Microstructure and Properties of CoCr Alloy Deposited Via Arc Deposition on a Single-Crystal Alloy" Materials 18, no. 17: 3994. https://doi.org/10.3390/ma18173994
APA StyleHuang, S., Wang, T., Miao, J., Wang, C., Liu, W., Zhang, G., Chen, B., & Zhou, B. (2025). A Study on the Microstructure and Properties of CoCr Alloy Deposited Via Arc Deposition on a Single-Crystal Alloy. Materials, 18(17), 3994. https://doi.org/10.3390/ma18173994