Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization
Abstract
1. Introduction
2. Raw Materials and Experimental Methods
2.1. Raw Materials
2.2. Experimental Methods
2.2.1. Workability Test Method
2.2.2. Rheological Test Method
2.2.3. Printability Test Method
2.3. Three-Dimensional Printer Parameter Settings
2.4. Experimental Method and Mixture Proportions
2.4.1. Experimental Mixture Proportions
2.4.2. Evaluation Method of Extrudability
2.4.3. Supportability Evaluation Method
3. Experimental Results and Analysis
3.1. Investigation on Extrudability of 3D Printed Mortar
3.1.1. Effect of Flowability on Extrudability
3.1.2. Effect of Dynamic Yield Stress on Extrudability
3.2. Three-Dimensional Printing Mortar Supportability Investigation
3.2.1. Relationship Between Height Retention and Supportability
3.2.2. Relationship Between Static Yield Stress and Supportability
4. Conclusions
- (1)
- The method proposed in this study, which uses the extrusion uniformity and cumulative deformation rate of regenerated micro-powder geopolymer mortar to assess the extrusion and support properties of 3D-printed materials, has significant advantages over existing printability assessment methods and can be used to evaluate the extrusion and buildability of 3D-printed mortars. Under the experimental conditions of this study, when the recycled micro powder content is 10% and the nano-silica content is 1%, the extrusion and buildability of the mortar can be effectively improved.
- (2)
- The extrusion uniformity of 3D printing materials exhibits a non-monotonic relationship with mortar flowability. As flowability increases, uniformity initially decreases before increasing, and improves with the increase in dynamic yield stress. Under the experimental parameters in this study, when the dynamic yield stress ranges from 200 Pa to 800 Pa, extrusion uniformity can be maintained below 3.3%.
- (3)
- The cumulative deformation rate is inversely proportional to the height retention rate and static yield stress, decreasing as the height retention rate and static yield stress increase. The experimental results indicate that controlling the static yield stress within the range of 1800 Pa to 3300 Pa can effectively keep the cumulative deformation rate at ≤6%. At this point, with a high number of printed layers (≥30 layers), the mortar exhibits good buildability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gebhard, L.; Mata-Falcón, J.; Anton, A.; Dillenburger, B.; Kaufmann, W. Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Eng. Struct. 2021, 240, 112380. [Google Scholar] [CrossRef]
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.M.; Flatt, R.J. Digital Concrete: A Review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Li, H.; Zhang, D.W.; Sun, X.M.; Zhao, K.F.; Wang, Y.Y. Research Progress of Cementitious Materials and Related Properties for Building 3D Printing. Mater. Rep. 2023, 37, 21080117-14. [Google Scholar]
- Zhang, C.; Deng, Z.C.; Wang, Z.B.; Hou, Z.Y.; Jia, Z.J.; Wang, X.G.; Jia, L.T.; Chen, C.; Sun, Z.M.; Zhang, Y.M.; et al. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete. Bull. Chin. Ceram. Soc. 2021, 40, 1870–1878. [Google Scholar]
- Wang, X.N.; Li, W.G.; Guo, Y.P.; Kashani, A.; Wang, K.J.; Ferrara, L.; Agudelo, I. Concrete 3D printing technology for sustainable construction: A review on raw material, concrete type and performance. Dev. Built Environ. 2024, 17, 100378. [Google Scholar] [CrossRef]
- Ibrahim, K.A.; van Zijl, G.P.A.G.; Babafemi, A.J. Influence of limestone calcined clay cement on properties of 3D printed concrete for sustainable construction. J. Build. Eng. 2023, 69, 106186. [Google Scholar] [CrossRef]
- Kaushik, S.; Sonebi, M.; Amato, G.; Das, U.K.; Perrot, A. Optimisation of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material Strength Using Factorial Design of Experiment. Materials 2023, 16, 1748. [Google Scholar] [CrossRef]
- Li, Z.Z.; Hojati, M.; Wu, Z.Y.; Piasente, J.; Ashrafi, N.; Duarte, J.P.; Nazarian, S.; Bilén, S.G.; Memari, A.M.; Radliska, A. Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review. Sustainability 2020, 12, 5628. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Zhang, Y.; Jiang, Z.W. Effect of Hydroxypropyl Methylcellulose Ether on Properties of 3D Printing Mortar. J. Build. Mater. 2021, 24, 1123–1130. [Google Scholar]
- Jia, Z.J.; Kong, L.Y.; Jia, L.T.; Ma, L.; Chen, Y.; Zhang, Y.M. Printability and mechanical properties of 3D printing ultra-high performance concrete incorporating limestone powder. Constr. Build. Mater. 2024, 426, 136195. [Google Scholar] [CrossRef]
- Al-Tamimi, A.K.; Alqamish, H.H.; Khaldoune, A.; Alhaidary, H.; Shirvanimoghaddam, K. Framework of 3D Concrete Printing Potential and Challenges. Buildings 2023, 13, 827. [Google Scholar] [CrossRef]
- Rehman, A.U.; Kim, J.-H. 3D Concrete Printing: A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics. Materials 2021, 14, 3800. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, D.J.; Zhao, Q.; Wang, L.B. Study on printability of 3D printing carbon fiber reinforced eco-friendly concrete: Characterized by fluidity and consistency. Case Stud. Constr. Mater. 2024, 21, e03589. [Google Scholar] [CrossRef]
- Liu, X.F.; Li, C.; Guo, P.; Wang, L.; Chen, J.N.; Ma, G.W.; Wang, Q. Spray-based 3D printed tunnel slag concrete: Evaluation for printability and mechanical performance. Constr. Build. Mater. 2025, 467, 140392. [Google Scholar] [CrossRef]
- Fasihi, A.; Libre, N.A. From pumping to deposition: A Comprehensive review of test methods for characterizing concrete printability. Constr. Build. Mater. 2024, 414, 134968. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Gibb, A.G.F.; Thorpe, T. Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 2012, 45, 1221–1232. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Nair, A.O.S.; Panda, S.; Santhanam, M.; Sant, G.; Neithalath, N. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders. Cem. Concr. Compos. 2020, 112, 103671. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Xie, L.; Luo, Q.L.; Yu, K.K. Evaluation Method for Buildability of 3D Printed Concrete. Tianjin Constr. Sci. Technol. 2022, 32, 60–63. [Google Scholar]
- Ashrafi, N.; Nazarian, S.; Meisel, N.A.; Duarte, J.P. Experimental prediction of material deformation in large-scale additive manufacturing of concrete. Addit. Manuf. 2021, 37, 101656. [Google Scholar] [CrossRef]
- Panda, B.; Ruan, S.Q.; Unluer, C.; Tan, M.J. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos. Part B Eng. 2019, 165, 75–83. [Google Scholar] [CrossRef]
- Nerella, V.N.; Krause, M.; Mechtcherine, V. Direct printing test for buildability of 3D-printable concrete considering economic viability. Autom. Constr. 2020, 109, 102986. [Google Scholar] [CrossRef]
- Ivanova, I.; Ivaniuk, E.; Bisetti, S.; Nerella, V.N.; Mechtcherine, V. Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cem. Concr. Res. 2022, 156, 106764. [Google Scholar] [CrossRef]
- Liu, H.R.; Ding, T.; Xiao, J.Z.; Mechtcherine, V. Buildability prediction of 3D–printed concrete at early-ages: A numerical study with Drucker–Prager model. Addit. Manuf. 2022, 55, 102821. [Google Scholar] [CrossRef]
- Tang, J.Y.; Xi, Y.B.; Gao, D.Y.; Yang, L.; You, P.B.; Fang, D. Review on Printability of 3D Printed Concrete. China Concr. Cem. Prod. 2022, 66, 18–23. [Google Scholar]
- Wang, L.; Li, D.L.; Ye, K.H.; Guan, J.Y.; Feng, D. Quantification, Optimization and Standardization of 3D Printability of Cementitious Composites. Bull. Chin. Ceram. Soc. 2021, 40, 1814–1820. [Google Scholar]
- Xiao, J.Z.; Hao, L.C.; Cao, W.Z.; Ye, T.H. Influence of recycled powder derived from waste concrete on mechanical and thermal properties of foam concrete. J. Build. Eng. 2022, 61, 105203. [Google Scholar] [CrossRef]
- GB/T 2419-2005; Test method for fluidity of cement mortar. National Standard of the People’s Republic of China: Beijing, China, 2005. (In Chinese)
- Panda, B.; Singh, G.V.P.B.; Unluer, C.; Tan, M.J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J. Clean. Prod. 2019, 220, 610–619. [Google Scholar] [CrossRef]
- Yahia, A.; Khayat, K.H. Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem. Concr. Res. 2001, 31, 731–738. [Google Scholar] [CrossRef]
- Khayat, K.H.; Yahia, A. Effect of Welan Gum-High-Range Water Reducer Combinations on Rheology of Cement Grout. Mater. J. 1997, 94, 365–372. [Google Scholar]
- Panda, B.; Paul, S.C.; Mohamed, N.A.N.; Tay, Y.W.D.; Tan, M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement 2018, 113, 108–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.M.; Ren, Q.; Jiang, Z.W. Effects of Bentonite on Printability of 3D Printing Mortar. J. Chin. Ceram. Soc. 2022, 50, 420–428. [Google Scholar]
- T/CECS 786-2020; Technical specification for concrete 3D printing. Standard of China Association for Engineering Construction Standardization: Beijing, China, 2020. (In Chinese)
- Wang, D.M.; Li, X.L.; Liu, Z. Preparation and Working Performance of Fly Ash / Phosphorus Slag Powder Modified Cement-based 3D Printing Materials. Bull. Chin. Ceram. Soc. 2020, 39, 2372–2378+2392. [Google Scholar]
- Mohan, M.K.; Rahul, A.V.; Van Tittelboom, K.; De Schutter, G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cem. Concr. Res. 2021, 139, 106258. [Google Scholar] [CrossRef]
- Jiao, Z.K.; Wang, D.M.; Wang, Q.B.; Huang, T.Y.; Wang, J.X.; Li, L.K. Influencing Factors and Testing Methods of Printability of 3D Printing Concrete Materials. Bull. Chin. Ceram. Soc. 2021, 40, 1821–1831. [Google Scholar]
- Jin, Y.; Xu, J.B.; Sun, D.T.; Chen, M.X.; Huang, Y.B.; Lu, L.C.; Cheng, X. Effect of Nano-Silica on Structural Deformation, Rheological and Mechanical Properties of 3D Printed White Portland Cement-Based Materials. Bull. Chin. Ceram. Soc. 2021, 40, 1855–1862. [Google Scholar]
- Hou, Z.Y. Research on Preparation and Performance of 3D Printing Fiber Reinforced Concrete. Master’s Thesis, Southeast University, Nanjing, China, 2020. [Google Scholar]
- Rahul, A.V.; Mohan, M.K.; De Schutter, G.; Van Tittelboom, K. 3D printable concrete with natural and recycled coarse aggregates: Rheological, mechanical and shrinkage behaviour. Cem. Concr. Compos. 2022, 125, 104311. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Z.C.; Ma, L.; Liu, C.; Chen, Y.N.; Wang, Z.B.; Jia, Z.J.; Wang, X.G.; Jia, L.T.; Chen, C.; et al. Research Progress and Application of 3D Printing Concrete. Bull. Chin. Ceram. Soc. 2021, 40, 1769–1795. [Google Scholar]
- Wang, Q.; Ren, X.D.; Li, J. Damage-rheology model for predicting 3D printed concrete buildability. Autom. Constr. 2023, 155, 105037. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Khayat, K.H.; Ramesh, A.; Sanjayan, J.G. Rheological characterization of ultra-high performance concrete for 3D printing. Cem. Concr. Compos. 2023, 136, 104854. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos. Part B Eng. 2019, 176, 107290. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Xia, Y.X. The Preparation and Properties on Alkali-activated Cementitious Material for 3D Printing. Master’s Thesis, Chongqing University, Chongqing, China, 2019. [Google Scholar]
Inspection Materials | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | Others |
---|---|---|---|---|---|---|---|---|---|
mineral powder | 47.1 | 25.9 | 12.7 | 0.3 | 6.7 | 2.8 | 0.4 | 0.4 | 3.7 |
fly ash | 3.8 | 52.6 | 33.3 | 5.1 | 0.6 | 0.5 | 0.3 | 1.3 | 2.5 |
recycled micro-powder | 12.4 | 54.7 | 15.9 | 6.5 | 3.3 | 0.7 | 2.0 | 2.9 | 1.6 |
Sample | Materials/g | Admixtures/g | Alkali Activator/g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slag | Fly Ash | Water | Sand | PP Fiber | Recycled Micro Powder | PVA | Water Retaining Thickener | ZnCl2 | Nano-Silica | Na2O·nSiO2 | NaOH | |
S-0.30 | 283.5 | 121.5 | 135 | 562.5 | 3.15 | 45 | 0.9 | 3.15 | 6.75 | 4.5 | 164.61 | 8.08 |
S-0.35 | 157.5 | |||||||||||
S-0.40 | 180 | |||||||||||
S-0.45 | 202.5 | |||||||||||
S-0.50 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, F.; Lu, Y.; Xu, X.; Zhou, H.; Zhou, L.; Wei, Y. Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization. Materials 2025, 18, 3989. https://doi.org/10.3390/ma18173989
Yang S, Li F, Lu Y, Xu X, Zhou H, Zhou L, Wei Y. Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization. Materials. 2025; 18(17):3989. https://doi.org/10.3390/ma18173989
Chicago/Turabian StyleYang, Shuai, Fei Li, Ya Lu, Xiaoming Xu, Huajie Zhou, Lian Zhou, and Yongkang Wei. 2025. "Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization" Materials 18, no. 17: 3989. https://doi.org/10.3390/ma18173989
APA StyleYang, S., Li, F., Lu, Y., Xu, X., Zhou, H., Zhou, L., & Wei, Y. (2025). Study of the Printing Characteristics of a 3D Printing Solution for the Purpose of Process Optimization. Materials, 18(17), 3989. https://doi.org/10.3390/ma18173989