Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection and Initial Storage of Teeth
2.2. Experimental Groups
2.3. Sample Preparation
- Cavity preparation:
- Application of restorative materials:
2.4. Application of Fluorescein
- (a)
- In groups IAa, IIAa, IIIAa, IVAa, IBa, IIBa, IIIBa and IVBa (Table 1), after restoration, the middle and lower third of the molar roots were sectioned down to the furcation with a W-H turbine (Bürmoos, Austria) and diamond-tipped truncated cone bur, removing pulp tissue and sealing with nail polish [16], leaving access only to the pulp chamber, which was filled with 1% aqueous fluorescein/ethanol using a syringe (Sigma-Aldrich Chemie Gmbh, Riedstr, Germany). Subsequently, the samples were immersed in fluorescein for 3 h [16,23].
- (b)
- In groups IIIAb, IIIBb, IVAb and IVBb (Table 1), the fluorescein was mixed directly with the adhesive before application, without injection or subsequent dipping.
2.5. Cutting and Final Preparation of the Samples
2.6. Confocal Laser Scanning Microscopy (CLSM)
2.7. Field Emission Scanning Electron Microscopy (FESEM)
2.8. Energy Dispersive X-Ray (EDX) Analysis and Mapping
2.9. Vickers Microhardness
2.10. Statistical Analysis
3. Results
3.1. Evaluation of the Morphology of the Healthy Dentine Interface with Riva Light Cure, Riva Self Cure HV, Activa BioActive Restorative™ and GrandioSO® Restorative Materials
3.1.1. Group IAa (Riva Light Cure—Fluorescein Injected Through the Pulp Chamber)
3.1.2. Group IIAa (Riva Self Cure HV—Fluorescein Injected Through the Pulp Chamber)
3.1.3. Group IIIAa and IIIAb (Activa BioActive Restorative™—Fluorescein per Pulp Chamber and in the Adhesive)
3.1.4. Group IVAa and IVAb (GrandioSO®—Fluorescein in the Pulp Chamber and in the Adhesive)
3.2. Evaluation of the Morphology of the Carious Dentine Interface with Riva Light Cure, Riva Self Cure HV, Activa BioActive Restorative™ and GrandioSO® Restorative Materials
3.2.1. Group IBa (Riva Light Cure—Fluorescein Injected Through the Pulp Chamber)
3.2.2. Group IIBa (Riva Self Cure HV—Fluorescein Injected via the Pulp Chamber)
3.2.3. Group IIIBa and IIIBb (Activa BioActive Restorative™—Fluorescein per Pulp Chamber and in the Adhesive)
3.2.4. Group IVBa and IVBb (Activa BioActive Restorative™—Fluorescein per Pulp Chamber and in the Adhesive)
3.3. Evaluation of the Semi-Quantitative Composition of the Interface Between Healthy or Carious Dentine and the Restorative Materials Riva Light Cure, Riva Self Cure HV, Activa BioActive Restorative™ and GrandioSO® by Energy Dispersive X-Ray Spectroscopy Mapping
3.4. Vickers Microhardness Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPA | Bisphenol A |
CD | Carious Dentine |
CLSM | Confocal Laser Scanning Microscope |
RC | Composite Resins |
DT | Dentine Tubule |
EDX | Energy Dispersive X-Ray |
F | Fracture |
FAS | Fluoro-Alumino-Silicate |
FESEM | Field Emission Scanning Electron Microscope |
GIC | Glass Ionomer Cement |
HL | Hybrid Layer |
ICDAS | International Caries Detection and Assessment System |
M | Material |
MID | Minimally Invasive Dentistry |
HV GIC | High-Viscosity Glass Ionomer Cement |
P | Pore |
RM GIC | Resin-Modified Glass Ionomer Cement |
SD | Sound Dentine |
T | Tag |
VHN | Vickers Hardness |
Appendix A
References
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, T.K.; Calvo, A.F.B.; Domingues, G.G.; Mendes, F.M.; Raggio, D.P. Bond Strength of High-Viscosity Glass Ionomer Cements is Affected by Tubular Density and Location in Dentin? Microsc. Microanal. 2015, 21, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Cedillo, J.J.; Herrera, A.; Farías, R. Hybridization to enamel and dentin of high density glass ionomers, SEM study. Rev. ADM 2017, 74, 177–184. [Google Scholar]
- Isolan, C.P.; Sarkis-Onofre, R.; Lima, G.S.; Moraes, R.R. Bonding to Sound and Caries-Affected Dentin: A Systematic Review and Meta-Analysis. J. Adhes. Dent. 2018, 20, 7–18. [Google Scholar] [CrossRef]
- Gómez de Ferraris, M.E.; Campus, A. Histology, Embryology and Tissue Engineering; Editorial Médica Panamericana: Madrid, Spain, 2009; pp. 185–194. [Google Scholar]
- Combes, C.; Cazalbou, S.; Rey, C. Apatite Biominerals. Minerals 2016, 6, 34. [Google Scholar] [CrossRef]
- Poornima, J.; Kavitha, S.; Mahalaxmi, S. Effect of Green and White Tea Pretreatment on Remineralization of Demineralized Dentin by CPP-ACFP-An Invitro Microhardness Analysis. JCDR 2016, 10, 85–89. [Google Scholar] [CrossRef]
- Frencken, J.E.; Peters, M.C.; Manton, D.J.; Leal, S.C.; Gordan, V.V.; Eden, E. Minimal intervention dentistry for managing dental caries-a review. Int. Dent. J. 2012, 62, 223–243. [Google Scholar] [CrossRef]
- Schwendicke, F.; Frencken, J.E.; Bjørndal, L.; Maltz, M.; Manton, D.J.; Ricketts, D.; Van Landuyt, K.; Banerjee, A.; Campus, G.; Doméjean, S.; et al. Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal. Adv. Dent. Res. 2016, 28, 58–67. [Google Scholar] [CrossRef]
- Shelke, U.R.; Shiraguppi, V.L.; Deosarkar, B.; Tayeeb, S.; Rathod, S.; Shah, Y. Minimal Invasive Dentistry-A Systematic Respect For The Original Tissue. J. Interdiscip. Dent. Sci. 2020, 9, 29–36. [Google Scholar]
- Cheng, L.; Zhang, L.; Yue, L.; Ling, J.; Fan, M.; Yang, D.; Huang, Z.; Niu, Y.; Liu, J.; Zhao, J.; et al. Expert consensus on dental caries management. Int. J. Oral. Sci. 2022, 14, 17. [Google Scholar] [CrossRef]
- IAPD. Minimal Invasive Dentistry: Foundational Articles and Consensus Recommendations; IAPD: Geneva, Switzerland, 2020. [Google Scholar]
- Lohbauer, U. Dental Glass Ionomer Cements as Permanent Filling Materials? Properties, Limitations and Future Trends. Materials 2009, 3, 76–96. [Google Scholar] [CrossRef]
- Davidson, C.L. Advances in glass-ionomer cements. J. Appl. Oral. Sci. 2006, 14, 3–9. [Google Scholar] [CrossRef]
- Francois, P.; Fouquet, V.; Attal, J.P.; Dursun, E. Commercially Available Fluoride-Releasing Restorative Materials: A Review and a Proposal for Classification. Materials 2020, 13, 2313. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.K.; Watson, T.E. Interfacial Characteristics of Resin-modified Glass-ionomer Materials: A Study on Fluid Permeability Using Confocal Fluorescence Microscopy. J. Dent. Res. 1998, 77, 1749–1759. [Google Scholar] [CrossRef]
- Sauro, S.; Faus-Matoses, V.; Makeeva, I.; Nuñez Martí, J.M.; Gonzalez Martínez, R.; García Bautista, J.A.; Faus-Llacer, V. Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created with a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress. Materials 2018, 11, 1884. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.V.; Pallesen, U.; Benetti, A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent. Mater. 2019, 35, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ebaya, M.M.; Ali, A.I.; Mahmoud, S.H. Evaluation of Marginal Adaptation and Microleakage of Three Glass Ionomer-Based Class V Restorations: In Vitro Study. Eur. J. Dent. 2019, 13, 599–606. [Google Scholar] [CrossRef]
- Benetti, A.R.; Michou, S.; Larsen, L.; Peutzfeldt, A.; Pallesen, U.; Van Dijken, J.W.V. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater. Investig. Dent. 2019, 6, 90–98. [Google Scholar] [CrossRef]
- Darvell, B.W.; Smith, A.J. Inert to bioactive-A multidimensional spectrum. Dent. Mater. 2020, 38, 2–6. [Google Scholar] [CrossRef]
- Ceballos, L. Adhesion to caries-affected dentin and sclerotic dentin. Av. Odontoestomatol. 2004, 20, 71–78. [Google Scholar] [CrossRef]
- Toledano, M.; Osorio, R.; Cabello, I.; Osorio, E.; Toledano-Osorio, M.; Aguilera, F.S. Oral Function Improves Interfacial Integrity and Sealing Ability Between Conventional Glass Ionomer Cements and Dentin. Microsc. Microanal. 2017, 23, 131–144. [Google Scholar] [CrossRef]
- Shimada, Y.; Kondo, Y.; Inokoshi, S.; Tagami, J.; Antonucci, J.M. Demineralizing effect of dental cements on human dentin. Quintessence Int. 1999, 30, 267–273. [Google Scholar]
- Fuentes, V.; Toledano, M.; Osorio, R.; Carvalho, R.M. Microhardness of superficial and deep sound human dentin. J. Biomed. Mater. Res. 2003, 66A, 850–853. [Google Scholar] [CrossRef]
- Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates. J. Dent. Res. 2012, 91, 454–459. [Google Scholar] [CrossRef]
- Zoergiebel, J.; Ilie, N. An In Vitro study on the maturation of conventional glass ionomer cements and their interface to dentin. Acta Biomater. 2013, 9, 9529–9537. [Google Scholar] [CrossRef]
- Hershkovitz, F.; Cohen, O.; Zilberman, U. Microhardness of three glass-ionomer cements during setting and up to 15 days In Vitro, and after 5 to 10 years In Vivo. Quintessence Int. 2020, 51, 440–446. [Google Scholar] [CrossRef]
- Ismail, H.S.; Ali, A.I.; Mehesen, R.E.; Garcia-Godoy, F.; Mahmoud, S.H. In Vitro marginal and internal adaptation of four different base materials used to elevate proximal dentin gingival margins. J. Clin. Exp. Dent. 2022, 14, e550–e559. [Google Scholar] [CrossRef]
- Cabello, I.; Cánovas, B.; Martínez, E.; Serna-Muñoz, C.; Pérez-Silva, A.; Ortiz-Ruiz, A.J. Analysis of the Porosity and Microhardness of Glass Ionomer Cements. Mater. Sci. 2022, 28, 113–119. [Google Scholar] [CrossRef]
- D’Alpino, P.H.; Pereira, J.C.; Svizeroa, N.R.; Rueggebergb, F.A.; Pashley, C.D.H. Use of fluorescent compounds in assessing bonded resin-based restorations: A literature review. J. Dent. 2006, 34, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Vallittu, P.K.; Lassila, L. Characterization of fluoride releasing restorative dental materials. Dent. Mater. 2018, 37, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; McIntyre, N.S.; Davidson, R.D. Studies on the Adhesion of Glass-ionomer Cements to Dentin. J. Dent. Res. 1992, 71, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
Group | Description | Fluorochrome | Technique/Sample |
---|---|---|---|
(IAa) | Healthy Dentine + Riva Light Cure | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIAa) | Healthy Dentine + Riva Self Cure HV | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIIAa) | Healthy Dentine + Activa BioActive Restorative™ | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IVAa) | Healthy Dentine + GrandioSO® | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIIAb) | Healthy Dentine + Activa BioActive Restorative ™ | Rhodamine B + fluorescein in the adhesive | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth |
(IVAb) | Healthy Dentine + GrandioSO® | Rhodamine B + fluorescein in the adhesive | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth |
(IBa) | Carious Dentine + Riva Light Cure | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIBa) | Carious Dentine + Riva Self Cure HV | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIIBa) | Carious Dentine + Activa BioActive Restorative ™ | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IVBa) | Carious Dentine + GrandioSO® | Rhodamine B + fluorescein in pulp chamber | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth Microhardness: 2 teeth—1 slice/tooth |
(IIIBb) | Carious Dentine + Activa BioActive Restorative ™ | Rhodamine B + fluorescein in the adhesive | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth |
(IVBb) | Carious Dentine + GrandioSO® | Rhodamine B + fluorescein in the adhesive | CLSM, FESEM, EDX: 2 teeth—2 slices/tooth |
C | O | N | Ca | P | Mg |
---|---|---|---|---|---|
71.92 ± 1.62 | 17.91 ± 2.16 | 6.92 ± 1.44 | 1.78 ± 0.43 | 1.67 ± 0.09 | 0.40 ± 0.11 |
O | C | Si | Al | Sr | F | Na | Ca | Ba | |
---|---|---|---|---|---|---|---|---|---|
Riva Light Cure | 30.32 ± 1.40 | 25.47 ± 0.65 | 11.63 ± 0.93 | 9.75 ± 0.74 | 12.03 ± 1.41 | 6.56 ± 0.68 | 0.81 ± 0.14 | 0.85 ± 0.17 | - |
Riva Self Cure HV | 31.63 ± 2.48 | 27.87 ± 6.39 | 9.96 ± 0.65 | 9.64 ± 1.51 | 10.75 ± 1.31 | 5.83 ± 1.26 | 0.72 ± 0.14 | 1.44 ± 0.58 | - |
Activa BioActive Restorative™ | 28.60 ± 1.67 a | 44.58 ± 3.17 a,b,c | 10.61 ± 0.92 a | 2.55 ± 0.39 b,c | - | 2.08 ± 0.51 b,c | 0.31 ± 0.07 b,c | 1.93 ± 0.62 b | 8.32 ± 0.84 |
GrandioSO® | 34.88 ± 2.15 b | 22.11 ± 3.34 | 23.00 ± 2.02 c | 3.43 ± 0.20 b,c | - | - | - | - | 15.49 ± 0.91 a |
O | Ca | C | P | N | Mg | Na | F | |
---|---|---|---|---|---|---|---|---|
Riva Light Cure | 36.53 ± 1.49 | 26.61 ± 1.24 | 20.39 ± 0.91 | 12.94 ± 0.36 | 3.05 ± 0.31 | 0.77 ± 0.05 | 0.48 ± 0.05 | 0.13 ± 0.20 |
Riva Self Cure HV | 33.73 ± 3.09 | 20.95 ± 1.25 | 28.17 ± 9.36 | 10.23 ± 2.50 | 5.25 ± 1.99 a,b | 0.55 ± 0.18 b | 0.41 ± 0.21 | 0.66 ± 0.26 b |
Activa BioActive Restorative™ | 36.54 ± 0.83 | 26.20 ± 0.93 | 20.34 ± 1.43 | 12.68 ± 0.47 | 3.40 ± 0.30 c | 0.63 ± 0.05 b | 0.67 ± 0.11 b,c | 0.26 ± 0.47 |
GrandioSO® | 35.82 ± 1.11 | 26.27± 1.23 | 21.95 ± 3.09 | 12.58 ± 0.59 | 3.09 ± 0.45 | 0.63 ± 0.09 b | 0.60 ± 0.07 c | - |
O | Ca | C | P | N | Mg | Na | F | Si | Sr | S | |
---|---|---|---|---|---|---|---|---|---|---|---|
Riva Light Cure | 36.12 ± 0.10 | 21.74 ± 2.68 | 24.34 ± 2.70 | 10.63 ± 1.17 | 4.94 ± 0.67 | - | 0.50 ± 0.08 | 0.72 ± 0.08 | - | 0.75 ± 037 | - |
Riva Self Cure HV | 32.45 ± 4.01 | 23.17 ± 2.11 | 26.44 ± 3.97 | 11.20 ± 1.12 | 4.78 ± 0.76 | 0.24 ± 0.03 | 0.37 ± 0.08 | 0.83 ± 0.30 | 1.46 ± 0.88 | 0.51 ± 0.54 | - |
Activa BioActive Restorative™ | 32.02 ± 4.05 | 24.13 ± 4.56 | 26.04 ± 5.87 | 11.97 ± 2.45 | 5.75 ± 1.61 | 0.30 ± 0.07 | 0.43 ± 0.09 | 0.46 ± 0.18 c | 0.32 ± 0.15 | 0.07 ± 0.10 b | 0.57 ± 0.28 |
GrandioSO® | 33.24 ± 1.59 | 26.62 ± 1.60 | 23.81 ± 2.86 | 12.93 ± 0.76 | 4.32 ± 0.58 | 0.41 ± 0.12 | 0.55 ± 0.12 | 0.35 ± 0.02 c | 0.65 ± 0.24 | 0.11 ± 0.12 | 0.32 ± 0.03 |
Materials | Material-Sound Dentine Interface | Material-Carious Dentine Interface | t-Test * | |
---|---|---|---|---|
Riva Light Cure | 62.51 ± 6.23 VHN c | 52.78 ± 9.79 VHN c | 13.03 ± 2.98 * VHN c | p < 0.001 |
Riva Self Cure HV | 82.50 ± 16.80 VHN | 36.33 ± 6.23 VHN | 34.56 ± 4.31 VHN | p = 0.605 |
Activa BioActive Restorative™ | 33.27 ± 8.68 VHN a,b,c | 32.97 ± 3.99 VHN a,b | 16.98 ± 4.98 * VHN c | p < 0.001 |
GrandioSO® | 111.04 ± 11.13 VHN b,c | 56.87 ± 8.95 VHN c | 18.62 ± 11.71 * VHN c | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde-Rubio, P.; Cereceda-Villaescusa, P.; Cabello, I.; Poza-Pascual, A.; Serna-Muñoz, C.; Ortiz-Ruiz, A.J. Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars. Materials 2025, 18, 3984. https://doi.org/10.3390/ma18173984
Valverde-Rubio P, Cereceda-Villaescusa P, Cabello I, Poza-Pascual A, Serna-Muñoz C, Ortiz-Ruiz AJ. Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars. Materials. 2025; 18(17):3984. https://doi.org/10.3390/ma18173984
Chicago/Turabian StyleValverde-Rubio, Pilar, Pilar Cereceda-Villaescusa, Inmaculada Cabello, Andrea Poza-Pascual, Clara Serna-Muñoz, and Antonio José Ortiz-Ruiz. 2025. "Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars" Materials 18, no. 17: 3984. https://doi.org/10.3390/ma18173984
APA StyleValverde-Rubio, P., Cereceda-Villaescusa, P., Cabello, I., Poza-Pascual, A., Serna-Muñoz, C., & Ortiz-Ruiz, A. J. (2025). Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars. Materials, 18(17), 3984. https://doi.org/10.3390/ma18173984