Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles
Abstract
1. Introduction
2. Experimental Overview
2.1. Specimen Design
2.2. Materials
2.3. Test Setup and Method
3. Experimental Results and Analyses
3.1. Failure Mode
3.2. Ultimate Bond Strength
3.2.1. Effect of Steel Bar Shape
3.2.2. Effect of DS Replacement Ratio
3.2.3. Effect of Freeze–Thaw Cycles
3.3. Peak Slip
3.4. Bond Strength–Slip Curve
4. Bond–Slip Constitutive Model
4.1. Statistical Regression of Bond–Slip Characteristic Values
4.2. Bond–Slip Model
4.3. Validation of Bond–Slip Model
4.4. Comparison with Other Research Results
5. Conclusions
- (1)
- After undergoing F-T cycles, all PSB specimens experienced pull-out failure. Meanwhile, most TSB specimens exhibited splitting failure, whereas a few specimens suffered a combined splitting and pull-out failure.
- (2)
- Under identical conditions, the bond strength of PSB specimens was lower than that of TSB specimens. The bond strength between DSC and steel bars decreased with an increase in F-T cycles. For concrete incorporating 60% desert sand, compared to specimens without F-T cycles, the bond strength of PSB specimens decreased by 16.87% and 50.26% after 25 and 75 F-T cycles, respectively, while TSB specimens decreased by 2.33% and 9.5%, respectively.
- (3)
- As the DS replacement ratio increased, the bond strength first decreased, then increased, and finally decreased again. When the F-T cycle was 0 times, compared with the sample with a DS replacement ratio of 0%, the bond strength of the PSB sample increased by −5.18%, 18.12%, 4.82%, −26.81%, and −31.25% at replacement rates of 20%, 40%, 60%, 80%, and 100%, respectively. The TSB samples increased by −3.22%, 5.98%, 1.42%, −1.59%, and −3.18%, respectively.
- (4)
- Under identical conditions, the bond strength of PSB specimens was lower than that of TSB specimens. The bond strength between DSC and steel bars decreased with an increase in F-T cycles. As the DS replacement ratio increased, the bond strength first decreased, then increased, and finally decreased again.
- (5)
- The bond–slip curve of the PSB specimen consisted of a linear rising stage, a slip-increase stage, and a debonding decline stage. In contrast, the bond–slip curve of the TSB specimen included a linear stage, a splitting failure stage, and a splitting–pulling stage.
- (6)
- Based on statistical regression analysis of the experimental data, empirical formulae for calculating bond–slip characteristic values considering the influence of multiple factors were proposed. Furthermore, a bond–slip constitutive model for DSC and steel bars was established, which closely matched the experimental curves.
- (7)
- The DSC samples with DS replacement ratios of 40% and 60% show that their bonding performance is significantly better than that of ordinary concrete samples, especially in cold environments. Therefore, it is recommended to use DSC samples with a substitution rate of 40%–60% to reduce the consumption of natural river sand in buildings in cold regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Dou, X.; Qu, F.; Shang, P.; Zhao, S. Bond Behavior of Steel Bars in Concrete Confined with Stirrups under Freeze–Thaw Cycles. Materials 2022, 15, 7152. [Google Scholar] [CrossRef]
- Guler, S.; Akbulut, Z.F. A comprehensive review of concrete durability in freeze-thaw conditions: Mechanisms, prevention, and mitigation strategies. Structures 2025, 75, 108804. [Google Scholar] [CrossRef]
- Tsoar, H. The ecological background, deterioration and reclamation of desert dune sand. Agric. Ecosyst. Environ. 1990, 33, 147–170. [Google Scholar] [CrossRef]
- Mohamedzein, Y.E.A.; Al-Aghbari, M.Y. The use of municipal solid waste incinerator ash to stabilize dune sands. Geotech. Geol. Eng. 2012, 30, 1335–1344. [Google Scholar] [CrossRef]
- Ameta, N.K.; Wayal, A.S.; Hiranandani, P. Stabilization of dune sand with ceramic tile waste as admixture. Am. J. Eng. Res. 2013, 2, 133–139. [Google Scholar]
- Jiang, C.; Zhou, X.; Tao, G.; Chen, D. Experimental study on the performance and microstructure of cementitious materials made with dune sand. Adv. Mater. Sci. Eng. 2016, 2016, 2158706. [Google Scholar] [CrossRef]
- Abadou, Y.; Mitiche-Kettab, R.; Ghrieb, A. Ceramic waste influence on dune sand mortar performance. Constr. Build. Mater. 2016, 125, 703–713. [Google Scholar] [CrossRef]
- Li, Z.; Yang, S.; Luo, Y. Experimental Evaluation of The Effort of Dune Sand Replacement Levels on Flexural Behaviour of Reinforced Beam. J. Asian. Archit. Build. 2020, 19, 480–489. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, R.; Zhou, Y.; Ji, F. Axial compressive properties analysis and strength evaluation of reinforced concrete short columns with dune sand. Structures 2025, 73, 108472. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, D.; Li, J. Seismic behavior of the dune sand concrete beam-column joints under cyclic loading. Structures 2022, 40, 1014–1024. [Google Scholar] [CrossRef]
- Li, Z.; Gan, D. Cyclic behavior and strength evaluation of RC columns with dune sand. J. Build. Eng. 2022, 47, 103801. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, L.; Qu, C.; Luo, L. Flexural mechanical properties of steel fiber desert sand concrete beams. Acta. Mater. Compos. Sin. 2022, 39, 5599–5610. [Google Scholar]
- Bekey, S.; Erbolat, A.; Nurtelek, G. Mechanical properties of RCFST compression short columns mixing desert sand. Eng. Mech. 2025, 42, 118–126. [Google Scholar]
- Wang, D.; Che, J.; Liu, C.; Liu, H. Design of Mixture Proportion of Engineered Cementitious Composites Based on Desert Sand. KSCE J. Civ. Eng. 2024, 28, 2897–2907. [Google Scholar] [CrossRef]
- Li, G.F.; Shen, X.D. A Study of the Durability of Aeolian Sand Powder Concrete Under the Coupling Effects of Freeze–Thaw and Dry-Wet Conditions. JOM 2019, 71, 1962–1974. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, W. Grey correlation analysis of macro-and micro-scale properties of aeolian sand concrete under the salt freezing effect. Structures 2023, 58, 105551. [Google Scholar] [CrossRef]
- Dong, W.; Wang, J. Deterioration law and life prediction of aeolian sand concrete under sulfate freeze-thaw cycles. Constr. Build. Mater. 2024, 411, 134593. [Google Scholar] [CrossRef]
- El-Hassan, H.; Alnajjar, F.; Al Jassmi, H.; Ahmed, W. Fresh and hardened properties of 3D-printed concrete made with dune sand. In RILEM International Conference on Concrete and Digital Fabrication; Springer International Publishing: Cham, Switzerland, 2020; pp. 225–234. [Google Scholar]
- Meng, D.; Huang, T.; Zhang, Y.X.; Lee, C.K. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients. Constr. Build. Mater. 2017, 141, 259–270. [Google Scholar] [CrossRef]
- Sahmaran, M.; Lachemi, M.; Hossain, K.M.; Ranade, R.; Li, V.C. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 2009, 106, 308–316. [Google Scholar] [CrossRef]
- Zhong, Y.; Bekey, S.; Yuan, H. Study on bonding properties of desert sand concrete and HRB400 steel bar. Build. Sci. 2020, 36, 86–93. [Google Scholar]
- Qin, Y.; Chen, Q.; Bi, Y.; Li, X. Experimental study on bonding performance between desert sand concrete and steel bars. Concrete 2024, 2, 73–77+82. [Google Scholar]
- Zhao, J.; Cai, G.; Gao, D. Influences of freeze-thaw cycle and curing time on chloride ion penetration resistance of sulphoaluminate Cement Concrete. Constr. Build. Mater. 2014, 53, 305–311. [Google Scholar] [CrossRef]
- Guan, X.; Niu, D.; Xiao, Q. Study on Concrete Freezing-thawing Damage Layer Considering Residual Strength Correction and Constitutive Model under Axial Compression. J. China Railw. Soc. 2021, 43, 175–182. [Google Scholar]
- Pilehvar, S.; Szczotok, A.M.; Rodríguez, J.F.; Valentini, L.; Lanzón, M.; Pamies, R.; Kjøniksen, A.L. Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Constr. Build. Mater. 2019, 200, 94–103. [Google Scholar] [CrossRef]
- Dvorkin, L. Design estimation of concrete frost resistance. Constr. Build. Mater. 2019, 211, 779–784. [Google Scholar] [CrossRef]
- Hanjari, K.Z.; Utgenannt, P.; Lundgren, K. Experimental study of the material and bond properties of frost-damaged concrete. Cem. Concr. Res. 2011, 41, 244–254. [Google Scholar] [CrossRef]
- Petersen, L.; Lohaus, L.; Polak, M.A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements. ACI Mater. J. 2007, 104, 369–378. [Google Scholar]
- Alves, J.; El-Ragaby, A.; El-Salakawy, E. Durability of GFRP bars’ bond to concrete under different loading and environmental conditions. J. Compos. Constr. 2011, 15, 249–262. [Google Scholar] [CrossRef]
- Belarbi, A.; Wang, H. Bond durability of FRP bars embedded in fiber-reinforced concrete. J. Compos. Constr. 2012, 16, 371–380. [Google Scholar] [CrossRef]
- Khanfour, M.A.; El Refai, A. Effect of freeze-thaw cycles on concrete reinforced with basalt-fiber reinforced polymers (BFRP) bars. Constr. Build. Mater. 2017, 145, 135–146. [Google Scholar] [CrossRef]
- Li, Z.; Deng, Z.; Yang, H.; Wang, H. Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage. Constr. Build. Mater. 2020, 250, 118805. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Chen, Q.; Liu, Y.; Zhang, Y.; Ma, G.; Duan, P. Bond properties of basalt fiber reinforced polymer (BFRP) bars in recycled aggregate thermal insulation concrete under freeze–thaw cycles. Constr. Build. Mater. 2022, 329, 127197. [Google Scholar] [CrossRef]
- Li, Y.; Jian, J.; Song, Y.; Wei, W.; Zhang, Y.; Li, G.; Lin, J.; Xiong, Z. Bond–Slip Performance of Steel–Fiber-Reinforced Polymer Composite Bars (SFCBs) and Glass Fiber with Expansion-Agent-Reinforced Seawater Sea-Sand Concrete (GF-EA-SSSC) under Freezing–Thawing Environment. Buildings 2024, 14, 1121. [Google Scholar] [CrossRef]
- Huang, X.; Su, T.; Wang, J.; Cao, F.; Wang, C. Bond Performance of Corroded Steel Reinforcement and Recycled Coarse Aggregate Concrete after Freeze–Thaw Cycles. Sustainability 2023, 15, 6122. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- GB/T 228.1—2010; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2011.
- GB/T 50082-2024; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2024.
- Ye, T.; Cao, W.; Dong, H.; Zhang, Y. Bond behavior between corroded steel bars and high-strength recycled concrete. J. Harbin. Inst. Technol. 2018, 50, 132–141. [Google Scholar]
- Li, Q.; Tian, Y.; Fang, D.; Zhao, K.; Chen, H.; Jin, X.; Fu, C.; He, R. The influence of longitudinal rebar type and stirrup ratio on the bond performance of reinforced concrete with corrosion. Constr. Build. Mater. 2023, 409, 133943. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Yang, S.; Ju, G. Experimental study on mechanical properties and stress strain constitutive relations of desert sand concrete. Chin. J. Appl. Mech. 2019, 36, 1131–1137+1261. [Google Scholar]
- Hu, K.; Fan, C.; Hu, D.; Wang, Q.; Zhang, J. Bond behavior between steel bar and concrete under freezing-thawing cycles and chloride erosion. Sci. Technol. Eng. 2019, 19, 237–243. [Google Scholar]
- Xu, S.; Li, A.; Wang, H. Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading. Constr. Build. Mater. 2017, 148, 344–358. [Google Scholar] [CrossRef]
- Liu, K.; Yan, J.; Meng, X.; Zou, C. Bond behavior between deformed steel bars and recycled aggregate concrete after freeze-thaw cycles. Constr. Build. Mater. 2020, 232, 117236. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Zhang, H.; Li, Y.; Ji, F.; Zhou, Y. Micro-mechanism and stress-strain curve analysis of desert sand concrete under carbonation. Constr. Build. Mater. 2025, 492, 142936. [Google Scholar] [CrossRef]
- Bolina, F.L.; München, R.M.; Dal Lago, B.; Kodur, V. A comparative study between ultra-high-performance concrete structures and normal strength concrete structures exposed to fire. Structures 2024, 68, 107197. [Google Scholar] [CrossRef]
Variables | R (%) | N | Reinforcement Types |
---|---|---|---|
Values | 0 | 0, 25, 50, 75 | PSB |
TSB | |||
20 | 0, 25, 50, 75 | PSB | |
TSB | |||
40 | 0, 25, 50, 75 | PSB | |
TSB | |||
60 | 0, 25, 50, 75 | PSB | |
TSB | |||
80 | 0, 25, 50, 75 | PSB | |
TSB | |||
100 | 0, 25, 50, 75 | PSB | |
TSB |
R (%) | Mix Proportion (kg/m3) | Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|---|
Water | Cement | Water Reducer | Coarse Aggregate | River Sand | Desert Sand | ||
0 | 160 | 400 | 1.6 | 1288 | 552 | 0 | 36.10 |
20 | 160 | 400 | 1.6 | 1288 | 441.6 | 110.4 | 33.27 |
40 | 160 | 400 | 1.6 | 1288 | 331.2 | 220.8 | 39.70 |
60 | 160 | 400 | 1.6 | 1288 | 220.8 | 331.2 | 36.34 |
80 | 160 | 400 | 1.6 | 1288 | 110.4 | 441.6 | 34.63 |
100 | 160 | 400 | 1.6 | 1288 | 0 | 552 | 29.43 |
Material | Bulk Density (kg/m3) | Apparent Density (kg/m3) | Water Absorption Rate (%) | water Content (%) | Mud Content (%) | Fineness Modulus (kg/m3) |
---|---|---|---|---|---|---|
crushed stone | 1578 | 2840 | 0.8 | 0.5 | 0.9 | - |
Desert sand | 1615 | 2630 | 2.1 | 1.5 | 1.9 | 0.198 |
River sand | 1350 | 2038 | 0.8 | 1.9 | 2.2 | 2.58 |
Types | Grades | d (mm) | Yield Strength (MPa) | Ultimate Strength (MPa) | Elastic Modulus (MPa) |
---|---|---|---|---|---|
TSB | HRB400 | 12 | 430 | 620 | 2 105 |
PSB | HPB400 | 12 | 415 | 600 | 2 105 |
No. | τ0 (MPa) | s0 (mm) | Fu (kN) | su (mm) | SD of su | τu (MPa) | SD of τu | τm (MPa) | sm (mm) | Failure Mode |
---|---|---|---|---|---|---|---|---|---|---|
PSB-R0-0 | 3.78 | 0.36 | 12.67 | 0.53 | 0.04 | 5.60 | 0.16 | 5.52 | 2.22 | P |
PSB-R0-25 | 2.61 | 0.56 | 8.67 | 0.66 | 0.05 | 3.83 | 0.18 | 3.63 | 2.86 | P |
PSB-R0-50 | 2.46 | 0.35 | 7.75 | 0.87 | 0.05 | 3.42 | 0.19 | 3.13 | 2.68 | P |
PSB-R0-75 | 1.70 | 0.34 | 5.63 | 0.99 | 0.10 | 2.48 | 0.18 | 2.38 | 2.30 | P |
PSB-R20-0 | 3.41 | 0.44 | 12.02 | 0.68 | 0.06 | 5.31 | 0.19 | 4.82 | 7.24 | P |
PSB-R20-25 | 2.57 | 0.39 | 8.49 | 0.74 | 0.06 | 3.75 | 0.18 | 3.04 | 3.14 | P |
PSB-R20-50 | 2.37 | 0.22 | 7.35 | 0.96 | 0.09 | 3.25 | 0.17 | 1.90 | 1.87 | P |
PSB-R20-75 | 1.34 | 0.50 | 3.96 | 1.11 | 0.07 | 1.75 | 0.09 | 1.74 | 7.64 | P |
PSB-R40-0 | 4.36 | 0.35 | 15.95 | 0.5 | 0.03 | 7.05 | 0.40 | 6.52 | 1.33 | P |
PSB-R40-25 | 3.28 | 0.33 | 10.94 | 0.62 | 0.06 | 4.84 | 0.18 | 4.58 | 7.72 | P |
PSB-R40-50 | 2.59 | 0.26 | 8.57 | 0.75 | 0.06 | 3.79 | 0.31 | 2.63 | 5.92 | P |
PSB-R40-75 | 1.69 | 0.61 | 6.30 | 0.89 | 0.09 | 2.78 | 0.20 | 2.32 | 6.26 | P |
PSB-R60-0 | 4.17 | 0.34 | 13.28 | 0.48 | 0.05 | 5.87 | 0.31 | 5.08 | 5.45 | P |
PSB-R60-25 | 3.46 | 0.37 | 11.03 | 0.57 | 0.04 | 4.88 | 0.29 | 4.18 | 3.91 | P |
PSB-R60-50 | 2.13 | 0.42 | 7.71 | 0.73 | 0.05 | 3.41 | 0.21 | 1.98 | 4.52 | P |
PSB-R60-75 | 1.57 | 0.25 | 6.61 | 0.87 | 0.07 | 2.92 | 0.12 | 2.08 | 3.74 | P |
PSB-R80-0 | 3.52 | 0.47 | 9.18 | 0.59 | 0.05 | 4.06 | 0.27 | 4.04 | 1.19 | P |
PSB-R80-25 | 3.03 | 0.48 | 8.43 | 0.81 | 0.04 | 3.73 | 0.23 | 3.43 | 2.14 | P |
PSB-R80-50 | 1.47 | 0.16 | 6.60 | 1.02 | 0.08 | 2.92 | 0.19 | 2.32 | 3.30 | P |
PSB-R80-75 | 1.02 | 0.35 | 4.01 | 1.24 | 0.12 | 1.77 | 0.17 | 1.25 | 5.39 | P |
PSB-R100-0 | 3.04 | 0.42 | 8.70 | 0.61 | 0.05 | 3.85 | 0.18 | 2.99 | 4.30 | P |
PSB-R100-25 | 2.15 | 0.52 | 6.65 | 0.88 | 0.08 | 2.94 | 0.29 | 2.74 | 10.59 | P |
PSB-R100-50 | 1.68 | 0.56 | 4.41 | 1.15 | 0.09 | 1.95 | 0.14 | 1.57 | 6.64 | P |
PSB-R100-75 | 1.23 | 0.13 | 3.66 | 1.42 | 0.10 | 1.62 | 0.14 | 1.24 | 5.00 | P |
TSB-R0-0 | 22.55 | 2.60 | 52.57 | 2.97 | 0.29 | 23.24 | 1.35 | - | - | S |
TSB-R0-25 | 22.38 | 2.24 | 51.89 | 3.22 | 0.25 | 22.94 | 2.23 | - | - | S |
TSB-R0-50 | 21.46 | 2.28 | 49.50 | 3.45 | 0.34 | 21.88 | 1.38 | - | - | S |
TSB-R0-75 | 20.13 | 1.88 | 46.52 | 3.78 | 0.33 | 20.57 | 1.64 | - | - | S |
TSB-R20-0 | 21.71 | 1.40 | 50.86 | 3.10 | 0.16 | 22.49 | 1.62 | - | - | S |
TSB-R20-25 | 19.77 | 2.40 | 49.45 | 3.33 | 0.20 | 21.86 | 1.87 | - | - | S |
TSB-R20-50 | 19.94 | 2.07 | 48.35 | 3.62 | 0.32 | 21.38 | 1.38 | - | - | S |
TSB-R20-75 | 17.64 | 2.53 | 46.34 | 4.87 | 0.32 | 20.49 | 0.90 | - | - | S |
TSB-R40-0 | 23.78 | 2.26 | 55.71 | 2.42 | 0.19 | 24.63 | 1.22 | - | - | S |
TSB-R40-25 | 22.64 | 2.84 | 52.99 | 2.45 | 0.20 | 23.43 | 1.86 | - | - | S |
TSB-R40-50 | 21.82 | 2.58 | 50.94 | 2.79 | 0.14 | 22.52 | 1.88 | - | - | S |
TSB-R40-75 | 20.85 | 2.29 | 47.97 | 3.00 | 0.13 | 21.21 | 2.02 | - | - | S |
TSB-R60-0 | 19.80 | 1.90 | 53.32 | 2.67 | 0.08 | 23.57 | 1.69 | - | - | S |
TSB-R60-25 | 22.14 | 2.51 | 52.08 | 2.90 | 0.20 | 23.02 | 1.98 | - | - | S |
TSB-R60-50 | 21.64 | 2.68 | 49.74 | 3.13 | 0.11 | 21.99 | 1.63 | - | - | S |
TSB-R60-75 | 20.59 | 2.25 | 48.24 | 3.45 | 0.20 | 21.33 | 1.29 | - | - | S |
TSB-R80-0 | 20.91 | 2.45 | 51.73 | 3.87 | 0.27 | 22.87 | 1.21 | - | - | S |
TSB-R80-25 | 19.58 | 2.00 | 49.31 | 3.99 | 0.31 | 21.80 | 1.29 | - | - | S |
TSB-R80-50 | 19.32 | 2.01 | 48.66 | 4.16 | 0.17 | 21.51 | 1.05 | - | - | S |
TSB-R80-75 | 17.59 | 1.61 | 46.15 | 4.57 | 0.20 | 20.40 | 2.05 | - | - | S |
TSB-R100-0 | 20.11 | 1.82 | 50.89 | 2.99 | 0.19 | 22.50 | 1.34 | - | - | S |
TSB-R100-25 | 18.77 | 1.45 | 49.4 | 3.50 | 0.12 | 21.75 | 1.92 | - | - | S |
TSB-R100-50 | 18.56 | 2.33 | 47.67 | 3.91 | 0.15 | 21.07 | 1.59 | 14.03 | 7.25 | S + P |
TSB-R100-75 | 16.19 | 2.20 | 43.87 | 4.94 | 0.15 | 19.39 | 1.46 | 12.54 | 8.20 | S + P |
Steel Bar Types | Stages | Characteristic Values | Expressions |
---|---|---|---|
TSB | Linear | ||
Splitting failure | |||
Splitting-pulling failure | |||
PSB | Linear rising | ||
Slip increase | |||
Debonding decline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Li, Z.; Jiao, J. Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles. Materials 2025, 18, 3971. https://doi.org/10.3390/ma18173971
Li M, Li Z, Jiao J. Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles. Materials. 2025; 18(17):3971. https://doi.org/10.3390/ma18173971
Chicago/Turabian StyleLi, Min, Zhiqiang Li, and Jian Jiao. 2025. "Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles" Materials 18, no. 17: 3971. https://doi.org/10.3390/ma18173971
APA StyleLi, M., Li, Z., & Jiao, J. (2025). Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles. Materials, 18(17), 3971. https://doi.org/10.3390/ma18173971