Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Equipment and Materials
2.2. Test and Parameters
3. Results
3.1. Mechanical Properties–Reference Measurements
3.2. Mechanical Properties—Composites
3.3. Morphology
4. Discussion
5. Conclusions
- The PC/PTEG combination exhibited the highest tensile strength (29.9 MPa) among the tested pairs using the interlayer bonding strategy, demonstrating excellent mechanical compatibility and strong interfacial adhesion.
- The interlayer bonding strategy (Test 4) significantly enhanced the joint strength compared to standard butt joints for the PLA/PTEG, PC/PTEG, and PC/ASA combinations.
- Conversely, the interlayer bonding strategy did not provide further improvement for the ASA/PETG combination compared to the “tooth strategy” (Test 3), indicating limitations in the bonding mechanism for this specific pair under the tested conditions.
- The results provide valuable quantitative data on the compatibility and achievable joint strength for these common MEX material pairs, aiding in material selection and interface design for multimaterial applications.
- The unexpected behavior of the ASA/PETG pair under the interlayer bonding strategy warrants further investigation into the specific adhesion mechanisms involved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Tang, F.; Shen, C. PLA-Based Composite Panels Prepared via Multi-Material Fused Filament Fabrication and Associated Investigation of Process Parameters on Flexural Properties of the Fabricated Composite. Polymers 2023, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.L.; Lee, S.; Cheng, S.H.; Goh, D.J.S.; Laya, P.; Nguyen, V.P.; Han, B.S.; Yeong, W.Y. Enhancing Interlaminar Adhesion in Multi-Material 3D Printing: A Study of Conductive PLA and TPU Interfaces through Fused Filament Fabrication. Mater. Sci. Addit. Manuf. 2024, 3, 2672. [Google Scholar] [CrossRef]
- Mustafa, I.; Kwok, T. Interlacing Infills for Multi-Material Fused Filament Fabrication Using Layered Depth Material Images. Micromachines 2022, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 2021, 6, 4. [Google Scholar] [CrossRef]
- An, J.; Leong, K.F. Multi-Material and Multi-Dimensional 3D Printing for Biomedical Materials and Devices. Biomed. Mater. Devices 2023, 1, 38–48. [Google Scholar] [CrossRef]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef]
- Ramírez-Revilla, S.; Camacho-Valencia, D.; Gonzales-Condori, E.G.; Márquez, G. Evaluation and Comparison of the Degradability and Compressive and Tensile Properties of 3D Printing Polymeric Materials: PLA, PETG, PC, and ASA. MRS Commun. 2022, 13, 55–62. [Google Scholar] [CrossRef]
- Hsueh, M.-H.; Lai, C.-J.; Wang, S.-H.; Zeng, Y.-S.; Hsieh, C.-H.; Pan, C.-Y.; Huang, W.-C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling. Polymers 2021, 13, 1758. [Google Scholar] [CrossRef]
- Pivar, M.; Vrabič-Brodnjak, U.; Leskovšek, M.; Gregor-Svetec, D.; Muck, D. Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures. Polymers 2024, 16, 2138. [Google Scholar] [CrossRef]
- Ermolai, V.; Sover, A. Multi-Material 3D Printed Interfaces. Influencing Factors and Design Considerations. In Lecture Notes in Networks and Systems; Springer Nature: Cham, Switzerland, 2023; pp. 135–146. [Google Scholar]
- Delia, S.; Rochman, A.; Curmi, A. Factors Affecting Interface Bonding in Multi-Material Additive Manufacturing. Prog. Addit. Manuf. 2024, 9, 1365–1379. [Google Scholar] [CrossRef]
- Brancewicz-Steinmetz, E.; Sawicki, J. Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing. Materials 2022, 15, 5563. [Google Scholar] [CrossRef]
- Martins, R.F.; Branco, R.; Martins, M.; Macek, W.; Marciniak, Z.; Silva, R.; Trindade, D.; Moura, C.; Franco, M.; Malça, C. Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications. Polymers 2024, 16, 1868. [Google Scholar] [CrossRef]
- Gajjar, T.; Yang, R.; Ye, L.; Zhang, Y.X. Effects of Key Process Parameters on Tensile Properties and Interlayer Bonding Behavior of 3D Printed PLA Using Fused Filament Fabrication. Prog. Addit. Manuf. 2024, 10, 1261–1280. [Google Scholar] [CrossRef]
- Prasong, W.; Ishigami, A.; Thumsorn, S.; Kurose, T.; Ito, H. Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers 2021, 13, 740. [Google Scholar] [CrossRef] [PubMed]
- Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing. Available online: https://www.researchgate.net/publication/336746179_Enhancing_the_interlayer_tensile_strength_of_3D_printed_short_carbon_fiber_reinforced_PETG_and_PLA_composites_via_annealing (accessed on 15 December 2024).
- Şahin, G.; Anaç, N.; Koçar, O. Investigation of the Weldability of 3D-Printed Multi-Material Materials (PLA and PLA Wood) Using Friction Stir Welding. Polymers 2024, 16, 3249. [Google Scholar] [CrossRef]
- Baca, D.; Ahmad, R. The Impact on the Mechanical Properties of Multi-Material Polymers Fabricated with a Single Mixing Nozzle and Multi-Nozzle Systems via Fused Deposition Modeling. Int. J. Adv. Manuf. Technol. 2020, 106, 4509–4520. [Google Scholar] [CrossRef]
- Sedlak, J.; Joska, Z.; Jansky, J.; Zouhar, J.; Kolomy, S.; Slany, M.; Svasta, A.; Jirousek, J. Analysis of the Mechanical Properties of 3D-Printed Plastic Samples Subjected to Selected Degradation Effects. Materials 2023, 16, 3268. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Kuipers, T.; Su, R.; Wu, J.; Wang, C.C.L. ITIL: Interlaced Topologically Interlocking Lattice for Continuous Dual-Material Extrusion. Addit. Manuf. 2022, 50, 102495. [Google Scholar] [CrossRef]
- Coogan, T.J.; Kazmer, D.O. Modeling of Interlayer Contact and Contact Pressure During Fused Filament Fabrication. J. Rheol. 2019, 63, 655–672. [Google Scholar] [CrossRef]
- Coogan, T.J.; Kazmer, D.O. Prediction of Interlayer Strength in Material Extrusion Additive Manufacturing. Addit. Manuf. 2020, 35, 101368. [Google Scholar] [CrossRef]
- ISO. ISO 527-1:2019. Available online: https://www.iso.org/standard/75824.html (accessed on 11 August 2025).
- Dairabayeva, D.; Perveen, A.; Talamona, D. Investigation on the Mechanical Performance of Mono and Multi-Material FFF Interfaces. Rapid Prototyp. J. 2023, 29, 40–52. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C.; Fu, J.; Huang, Y.; Zheng, Y. Interfacial Bonding during Multi-Material FDM due to Inter-Molecular Diffusion. Mater. Des. 2018, 150, 104–112. [Google Scholar] [CrossRef]
- Andreu, A.; Kim, S.; Dittus, J.; Friedmann, M.; Fleischer, J.; Yoon, Y.-J. Hybrid Material Extrusion 3D Printing to Strengthen Interlayer Adhesion through Hot Rolling. Addit. Manuf. 2022, 55, 102773. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zatloukal, J.; Viry, M.; Mizera, A.; Stoklásek, P.; Miškařík, L.; Bednařík, M. Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion. Materials 2025, 18, 3846. https://doi.org/10.3390/ma18163846
Zatloukal J, Viry M, Mizera A, Stoklásek P, Miškařík L, Bednařík M. Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion. Materials. 2025; 18(16):3846. https://doi.org/10.3390/ma18163846
Chicago/Turabian StyleZatloukal, Jakub, Mathieu Viry, Aleš Mizera, Pavel Stoklásek, Lukáš Miškařík, and Martin Bednařík. 2025. "Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion" Materials 18, no. 16: 3846. https://doi.org/10.3390/ma18163846
APA StyleZatloukal, J., Viry, M., Mizera, A., Stoklásek, P., Miškařík, L., & Bednařík, M. (2025). Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion. Materials, 18(16), 3846. https://doi.org/10.3390/ma18163846