Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Characterization of Surface Morphology and Wettability
3. Results and Discussion
3.1. Mineralogical Composition and Inhomogeneous Distribution in Green Schist
3.2. Femtosecond Laser Processing Results on the Heterogeneous Composition of Green Schist
3.3. Effect of Groove Spacing on Groove Depth and Surface Morphology
3.4. Effect of Scan Pass Number on Groove Depth and Surface Morphology
3.5. Hydrophobic Performance of Green Schist After Femtosecond Laser Grooving
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Chen, M.; Wang, Y. Surface flaking mechanism of stone components of ancient building complex in Wudang Mountain, China. Constr. Build. Mater. 2023, 399, 132611. [Google Scholar] [CrossRef]
- Wu, X. Wild Edible Plants and Pilgrimage on Wudang Mountain. J. Ethnobiol. 2015, 35, 606–627. [Google Scholar] [CrossRef]
- Lei, Z.; Wan, L.; Zhang, Y. Investigation, Diagnosis, Assessment and Conservation Strategy for a Wall Painting at Wudang Mountain Taoist Temple Using BIM Technology. Stud. Conserv. 2018, 63, 377–380. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Ershad-Langroudi, A. Polymeric coatings for protection of historic monuments: Opportunities and challenges. J. Appl. Polym. Sci. 2009, 112, 2535–2551. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Xu, S.; Lei, L. Green fabrication of mechanically stable superhydrophobic concrete with anti–corrosion property. J. Clean. Prod. 2021, 312, 127836. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Wang, N.; Qu, L.; Song, Q. Study of corrosion property and mechanical strength of eco–friendly fabricated superhydrophobic concrete. J. Clean. Prod. 2021, 323, 129267. [Google Scholar] [CrossRef]
- Schnell, G.; Polley, C.; Thomas, R.; Bartling, S.; Wagner, J.; Springer, A.; Seitz, H. How droplets move on laser–structured surfaces: Determination of droplet adhesion forces on nano– and microstructured surfaces. J. Colloid Interface Sci. 2022, 630, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Eryildiz, B.; Ozbey-Unal, B.; Menceloglu, Y.Z.; Keskinler, B.; Koyuncu, I. Development of robust superhydrophobic PFA/TMI/PVDF membrane by electrospinning/electrospraying techniques for air gap membrane distillation. J. Appl. Polym. Sci. 2023, 140, e53635. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Hu, X.; Jia, X.; Li, K.; Wang, C.; Wang, Y. Sustainability–oriented construction materials for traditional residential buildings: From material characteristics to environmental suitability. Case Stud. Constr. Mater. 2024, 21, e03820. [Google Scholar] [CrossRef]
- Bai, X.; Yang, S.; Tan, C.; Jia, T.; Guo, L.; Song, W.; Jian, M.; Zhang, X.; Zhang, Z.; Wu, L.; et al. Synthesis of TiO2 based superhydrophobic coatings for efficient anti–corrosion and self–cleaning on stone building surface. J. Clean. Prod. 2022, 380, 134975. [Google Scholar] [CrossRef]
- López, A.; Pozo–Antonio, J.; Moreno, A.; Rivas, T.; Pereira, D.; Ramil, A. Femtosecond laser texturing as a tool to increase the hydrophobicity of ornamental stone: The influence of lithology and texture. J. Build. Eng. 2022, 51, 104176. [Google Scholar] [CrossRef]
- Díaz, A.L.; Ramil, A.; Freire-Lista, D.M. Evaluation of femtosecond laser texturing on carbonate heritage stones. In Lasers in the Conservation of Artworks XIII2023; CRC Press: Boca Raton, FL, USA, 2023; pp. 234–244. [Google Scholar]
- Nosonovsky, M.; Bhushan, B. Biologically Inspired Surfaces: Broadening the Scope of Roughness. Adv. Funct. Mater. 2008, 18, 843–855. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, X.; Chen, S.; Lin, H.; Li, Z.; Lin, X. Hydrophobic or superhydrophobic modification of cement–based materials: A systematic review. Compos. Part B Eng. 2022, 243, 110104. [Google Scholar] [CrossRef]
- Ariza, R.; Alvarez-Alegria, M.; Costas, G.; Tribaldo, L.; Gonzalez-Elipe, A.R.; Siegel, J.; Solis, J. Multiscale ultrafast laser texturing of marble for reduced surface wetting. Appl. Surf. Sci. 2022, 577, 151850. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Shen, H.; Shuai, D.; Xiong, X.; Wang, Y.; Huang, H.; Li, Y. Superior self–cleaning surfaces via the synergy of superhydrophobicity and photocatalytic activity: Principles, synthesis, properties, and applications. J. Clean. Prod. 2023, 428, 139430. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; He, Q. Durable and robust superhydrophobic fluororubber surface fabricated by template method with exceptional thermostability and mechanical stability. Sep. Purif. Technol. 2022, 306, 122423. [Google Scholar] [CrossRef]
- Carrascosa, L.A.; Zarzuela, R.; Botana-Galvín, M.; Botana, F.J.; Mosquera, M.J. Achieving superhydrophobic surfaces with tunable roughness on building materials via nanosecond laser texturing of silane/siloxane coatings. J. Build. Eng. 2022, 58, 104979. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, H.; Zhang, Z.; Xu, K.; Lei, W.; Gao, J.; Liu, Y. Transparent superhydrophobic glass prepared by laser–induced plasma–assisted ablation on the surface. J. Mater. Sci. 2022, 57, 15679–15689. [Google Scholar] [CrossRef]
- Guo, C.; Li, K.; Liu, Z.L.; Chen, Y.; Xu, J.; Li, Z.; Cui, W.; Song, C.; Wang, C.; Jia, X.; et al. CW laser damage of ceramics induced by air filament. Opto-Electron. Adv. 2025, 8, 240296. [Google Scholar] [CrossRef]
- Jia, X.; Luo, J.; Li, K.; Wang, C.; Li, Z.; Wang, M.; Jiang, Z.; Veiko, V.P.; Duan, J. Ultrafast laser welding of transparent materials: From principles to applications. Int. J. Extreme Manuf. 2025, 7, 032001. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Wang, F.; Liu, Q.; Niu, F.; Li, J.; Huang, M.; Zhang, G.; Sun, R. Precise modulation of the debonding behaviours of ultra–thin wafers by laser–induced hot stamping effect and thermoelastic stress wave for advanced packaging of chips. Int. J. Extreme Manuf. 2024, 7, 015005. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, J.; Liu, X.; Yin, K.; Wang, H.; Wang, Q. Facile laser–based process of superwetting zirconia ceramic with adjustable adhesion for self–cleaning and lossless droplet transfer. Appl. Surf. Sci. 2023, 638, 158069. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Tan, D.; Gu, M.; Yue, Y.; Qiu, J. Focal volume optics for composite structuring in transparent solids. Int. J. Extreme Manuf. 2024, 7, 015002. [Google Scholar] [CrossRef]
- Wan, H.; Shu, Y.; Chen, S.; Cao, H.; Zhou, S.; Liu, S.; Gui, C. Laser–induced thermo–compression bonding for Cu–Au heterogeneous nanojoining. Int. J. Extreme Manuf. 2024, 7, 015101. [Google Scholar] [CrossRef]
- Chantada, A.; Penide, J.; Riveiro, A.; del Val, J.; Quintero, F.; Meixus, M.; Soto, R.; Lusquiños, F.; Pou, J. Increasing the hydrophobicity degree of stonework by means of laser surface texturing: An application on Zimbabwe black granites. Appl. Surf. Sci. 2017, 418, 463–471. [Google Scholar] [CrossRef]
- Tian, Z.; Lei, Z.; Chen, X.; Chen, Y.; Zhang, L.-C.; Bi, J.; Liang, J. Nanosecond pulsed fiber laser cleaning of natural marine micro–biofoulings from the surface of aluminum alloy. J. Clean. Prod. 2020, 244, 118724. [Google Scholar] [CrossRef]
- Pou–Álvarez, P.; Riveiro, A.; Nóvoa, X.; Fernández-Arias, M.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Lusquiños, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coat. Technol. 2021, 427, 127802. [Google Scholar] [CrossRef]
- López, A.J.; Ramil, A.; Pozo-Antonio, J.S.; Rivas, T.; Pereira, D. Ultrafast Laser Surface Texturing: A Sustainable Tool to Modify Wettability Properties of Marble. Sustainability 2019, 11, 4079. [Google Scholar] [CrossRef]
- Sun, X.; Wang, K.; Fan, Z.; Wang, R.; Mei, X.; Lu, Y. Regulation of hydrophobicity on yttria stabilized zirconia surface by femtosecond laser. Ceram. Int. 2021, 47, 9264–9272. [Google Scholar] [CrossRef]
- Wang, Q.; Kainuma, S.; Zhuang, S.; Shimizu, K.; Haraguchi, M. Laser cleaning on severely corroded steel members: Engineering attempt and cleanliness assessment. J. Clean. Prod. 2022, 376, 134224. [Google Scholar] [CrossRef]
- Xu, J.; Su, Q.; Shan, D.; Guo, B. Sustainable micro–manufacturing of superhydrophobic surface on ultrafine–grained pure aluminum substrate combining micro–embossing and surface modification. J. Clean. Prod. 2019, 232, 705–712. [Google Scholar] [CrossRef]
- Balage, P.; Lopez, J.; Bonamis, G.; Hönninger, C.; Manek-Hönninger, I. Crack–free high–aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz–bursts. Int. J. Extreme Manuf. 2022, 5, 015002. [Google Scholar] [CrossRef]
- Orazi, L.; Romoli, L.; Schmidt, M.; Li, L. Ultrafast laser manufacturing: From physics to industrial applications. CIRP Ann. 2021, 70, 543–566. [Google Scholar] [CrossRef]
- Tan, D.; Zhang, B.; Qiu, J. Ultrafast Laser Direct Writing in Glass: Thermal Accumulation Engineering and Applications. Laser Photon. Rev. 2021, 15, 2000455. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, L.; Wang, C.; Li, C.; Lin, N.; Niu, S.; Han, Z.; Duan, J. Bioinspired Near–Full Transmittance MgF2 Window for Infrared Detection in Extremely Complex Environments. ACS Appl. Mater. Interfaces 2023, 15, 30985–30997. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, C.; Ren, H.; Wei, X.; Shen, H. Welding threshold in ultrafast laser welding of quartz glass and 304 stainless steel. Opt. Laser Technol. 2024, 181, 111622. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Wu, C.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, T.J.-Y.; Bulgakova, N.M.; Kautek, W.; Rethfeld, B.; et al. Fundamentals of ultrafast laser–material interaction. MRS Bull. 2016, 41, 960–968. [Google Scholar] [CrossRef]
- Qingliang, S.; Tiyuan, W.; Qiang, S.; Fang, Y.; Hejun, L.; Fu, M. Unraveling of the laser drilling of carbon/carbon composites: Ablation mechanisms, shape evolution, and damage evaluation. Int. J. Mach. Tools Manuf. 2022, 184, 103978. [Google Scholar] [CrossRef]
- Shen, H.; Yang, Z.; Tian, C.; Ren, H.; Wei, X. High welding strength of fused silica and stainless steel by picosecond laser with large defocus. Ceram. Int. 2025, 51, 18154–18165. [Google Scholar] [CrossRef]
- Fan, P.; Dong, X.; Wang, K.; Liu, B.; Shen, P.; Yi, L.; Mei, X.; Fan, Z. Optimization of laidback fan–shaped holes machined by femtosecond laser. Int. J. Mech. Sci. 2024, 286, 109874. [Google Scholar] [CrossRef]
- Jia, X.; Lin, J.; Li, Z.; Wang, C.; Li, K.; Wang, C.; Duan, J. Continuous wave laser ablation of alumina ceramics under long focusing condition. J. Manuf. Process. 2025, 134, 530–546. [Google Scholar] [CrossRef]
- Zolriasatein, A.; RajabiMashhadi, Z.; Rezaei Abadchi, M.; Riahi Noori, N.; Abyazi, S. A New Approach Based on RTV/SiO2 Nano coating to Tackling Environmental Pollution on Electrical Energy Distributions. J. Renew. Energy Environ. 2022, 9, 45–51. [Google Scholar] [CrossRef]
- Zolriasatein, A.; RajabiMashhadi, Z.; Ardebili, D.H.; Noori, N.R.; Abadchi, M.R.; Mirzaee, M. UV accelerated aging of RTV/SiO2 nanocomposites: Study on surface microstructure, hydrophobicity, and electrical properties. Int. J. Adhes. Adhes. 2023, 126, 103465. [Google Scholar] [CrossRef]
- Li, Z.; Lin, J.; Wang, C.; Li, K.; Jia, X.; Wang, C.; Duan, J. Damage performance of alumina ceramic by femtosecond laser induced air filamentation. Opt. Laser Technol. 2024, 181, 111781. [Google Scholar] [CrossRef]
Groove Spacing μm | Scanning Passes | Water Contact Angle ° |
---|---|---|
40 | 1 | 156 |
60 | 1 | 155 |
80 | 1 | 158 |
100 | 1 | 156 |
40 | 2 | 156 |
60 | 2 | Superhydrophobic surface |
80 | 2 | 167 |
100 | 2 | 158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, K.; Jia, X.; Wang, C.; Wang, Y.; Yuan, Z. Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters. Materials 2025, 18, 3751. https://doi.org/10.3390/ma18163751
Wang C, Li K, Jia X, Wang C, Wang Y, Yuan Z. Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters. Materials. 2025; 18(16):3751. https://doi.org/10.3390/ma18163751
Chicago/Turabian StyleWang, Chengaonan, Kai Li, Xianshi Jia, Cong Wang, Yansong Wang, and Zheng Yuan. 2025. "Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters" Materials 18, no. 16: 3751. https://doi.org/10.3390/ma18163751
APA StyleWang, C., Li, K., Jia, X., Wang, C., Wang, Y., & Yuan, Z. (2025). Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters. Materials, 18(16), 3751. https://doi.org/10.3390/ma18163751