Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteristics of SWCNT Inks
3.2. Structural and Thermoelectric Properties of SWCNT Films
3.3. Performance of Water-Floating SWCNT-TEGs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, C.F.; Sun, T.; Cao, F.; Liu, Q.; Ren, Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci. Appl. 2014, 3, 161. [Google Scholar]
- Matiko, J.W.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2014, 25, 012002. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 2006, 17, 175–195. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Leonov, V. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 2013, 13, 2284–2291. [Google Scholar] [CrossRef]
- Zhou, M.; A-Furjan, M.S.H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human—Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609. [Google Scholar] [CrossRef]
- Akinaga, H. Recent advances and future prospects in energy harvesting technologies. J. Appl. Phys. 2020, 59, 110201. [Google Scholar] [CrossRef]
- Almoneef, T.S.; Erkmen, F.; Ramahi, O.M. Harvesting the energy of multi-polarized electromagnetic waves. Sci. Rep. 2017, 7, 14656. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Leon, R.; Urquizo, J.; Silva, C.E.; Silva-Leon, J.; Wu, J.; Singh, P.; Soriano, G. Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: A review. Energy Rep. 2022, 8, 3809–3826. [Google Scholar] [CrossRef]
- Zeadally, S.; Shaikh, F.K.; Talpur, A.; Sheng, Q.Z. Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 2020, 128, 109901. [Google Scholar] [CrossRef]
- Lee, B.M.; Yang, H. Massive MIMO for industrial internet of things in cyber-physical systems. IEEE Trans. Ind. Inf. 2017, 14, 2641–2652. [Google Scholar] [CrossRef]
- Tohidi, F.; Holagh, S.G.; Chitsaz, A. Thermoelectric generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 2022, 201, 117793. [Google Scholar] [CrossRef]
- Feng, M.; Lv, S.; Deng, J.; Guo, Y.; Wu, Y.; Shi, G.; Zhang, M. An overview of environmental energy harvesting by thermoelectric generators. Renew. Sustain. Energy Rev. 2023, 187, 113723. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.-L.; Yang, Y.-L.; Chen, Z.-G. Flexible thermoelectric materials and devices: From materials to applications. Mater. Today 2021, 46, 62–108. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, Y.; Wang, W.; Hu, M.; Huang, X.; Mao, D.; Huang, S.; Xie, L.; Lin, P.; Jiang, B.; et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. Nat. Nanotechnol. 2023, 18, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Chen, J.; Chen, Z.; Li, Y.; Zhang, J.; Song, T.; Sun, B. Printed flexible thermoelectric materials and devices. J. Mater. Chem. A 2021, 9, 19439–19464. [Google Scholar] [CrossRef]
- Norimasa, O.; Chiba, T.; Hase, M.; Komori, T.; Takashiri, M. Improvement of thermoelectric properties of flexible Bi2Te3 thin films in bent states during sputtering deposition and post-thermal annealing. J. Alloys Compd. 2022, 898, 162889. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Fan, P.; Chen, T.B.; Cai, Z.K.; Liu, P.J.; Liang, G.X.; Zhang, D.P.; Cai, X.M. Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition. Thin Solid Film 2012, 520, 5245–5248. [Google Scholar] [CrossRef]
- Hokazono, M.; Anno, H.; Toshima, N. Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices. J. Electron. Mater. 2014, 43, 2196–2201. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.-Q.; Qian, W.-Z.; Zhang, Y.-Y.; Wei, F. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 2013, 9, 1237–1265. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, J.A.; Andrews, J.B.; Noyce, S.G.; Franklin, A.D. Carbon nanotube electronics for IoT sensors. Nano Futures 2020, 4, 012001. [Google Scholar] [CrossRef]
- Kato, K.; Hagino, H.; Miyazaki, K. Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method. J. Electron. Mater. 2013, 42, 1313–1318. [Google Scholar] [CrossRef]
- Dahiya, A.S.; Thireau, J.; Boudaden, J.; Lal, S.; Gulzar, U.; Zhang, Y.; Gil, T.; Azemard, N.; Ramm, P.; Kiessling, T. Review—Energy autonomous wearable sensors for smart healthcare: A review. J. Electrochem. Soc. 2020, 167, 037516. [Google Scholar] [CrossRef]
- Amma, Y.; Miura, K.; Nagata, S.; Nishi, T.; Miyake, S.; Miyazaki, K.; Takashiri, M. Ultra-long air-stability of n-type carbon nanotube films with low thermal conductivity and all-carbon thermoelectric generators. Sci. Rep. 2022, 12, 21603. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Yabuki, H.; Takashiri, M. High thermoelectric performance of flexible nanocomposite films based on Bi2Te3 nanoplates and carbon nanotubes selected using ultracentrifugation. Sci. Rep. 2023, 13, 3010. [Google Scholar] [CrossRef] [PubMed]
- Norimasa, O.; Tamai, R.; Nakayama, H.; Shinozaki, Y.; Takashiri, M. Self-generated temperature gradient under uniform heating in p–i–n junction carbon nanotube thermoelectric generators. Sci. Rep. 2025, 15, 15956. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Yamaguchi, R.; Toshimitsu, F.; Matsumoto, M.; Borah, A.; Staykov, A.; Islam, M.S.; Hayami, S.; Fujigaya, T. Air-stable n-type single-walled carbon nanotubes doped with benzimidazole derivatives for thermoelectric conversion and their air-stable mechanism. ACS Appl. Nano Mater. 2019, 2, 4703–4710. [Google Scholar] [CrossRef]
- Nonoguchi, Y.; Nakano, M.; Murayama, T.; Hagino, H.; Hama, S.; Miyazaki, K.; Matsubara, R.; Nakamura, M.; Kawai, T. Simple alt-coordinated n-type nanocarbon materials stable in air. Adv. Funct. Mater. 2016, 26, 3021–3028. [Google Scholar] [CrossRef]
- Hata, S.; Yanagawa, Y.; Oshima, K.; Tomotsu, J.; Du, Y.; Shiraishi, Y.; Toshima, N. Highly-stable n-type carbon nanotube material under accelerated aging conditions: Conjunctive effect of hydrazine derivatives and commodity polymers. Chem. Lett. 2019, 48, 1109–1111. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Sanchez-Valencia, J.R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, K.; Udoguchi, H.; Sagitani, S.; Oshima, Y.; Takenobu, T.; Kataura, H.; Ishida, T.; Matsuda, K.; Maniwa, Y. Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 2010, 4, 4027–4032. [Google Scholar] [CrossRef] [PubMed]
- McClain, D.; Thomas, N.; Youkey, S.; Schaller, R.; Jiao, J.; O’Brien, K.P. Impact of oxygen adsorption on a population of mass produced carbon nanotube field effect transistors. Carbon 2009, 47, 1493–1500. [Google Scholar] [CrossRef]
- Dai, R.; Xie, D.; Xu, J.; Sun, Y.; Sun, M.; Zhang, C.; Li, X. Adjustable hydrazine modulation of single-wall carbon nanotube network field effect transistors from p-type to n-type. Nanotechnology 2016, 27, 445203. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Park, N.; Ko, J.-H.; Bae, E.; Park, W. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 2005, 16, 1048. [Google Scholar] [CrossRef]
- Seki, Y.; Nagata, K.; Takashiri, M. Facile preparation of air-stable n-type thermoelectric single-wall carbon nanotube films with anionic surfactants. Sci. Rep. 2020, 10, 8104. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Chiba, T.; Seki, Y.; Takashiri, M. Origin of n-type properties in single wall carbon nanotube films with anionic surfactants investigated by experimental and theoretical analyses. Sci. Rep. 2021, 11, 5758. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zuo, T.; Wang, Z.; Yan, S. Effects of CNTs/PVA on concrete performance: Strength, drying shrinkage, and microstructure. Materials 2025, 18, 2535. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Paineau, E.; Rouzière, S.; Elkaim, É.; Goldmann, C.; Toquer, D.; Rols, S.; Launois, P. The atomic structure of imogolite nanotubes: A 50 years old issue reinvestigated by X-ray scattering experiments and molecular dynamics simulations. Appl. Clay Sci. 2023, 242, 107043. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Guercio, L.; Cavallaro, G.; Duca, D.; Ferrante, F. Halloysite clay nanotubes for catalytic conversion of biomass: Synergy between computational modeling and experimental studies. ACS Catal. 2024, 14, 18167–18203. [Google Scholar] [CrossRef]
- Rennhofer, H.; Zanghellini, B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: A review. Nano Mater. 2021, 11, 1469. [Google Scholar] [CrossRef] [PubMed]
- Sabet, S.M.; Mahfuz, H.; Hashemi, J.; Nezakat, M.; Szpunar, J.A. Effects of sonication energy on the dispersion of carbon nanotubes in a vinyl ester matrix and associated thermo-mechanical properties. J. Mater. Sci. 2015, 50, 4729–4740. [Google Scholar] [CrossRef]
- Chen, S.J.; Zou, B.; Collins, F.; Zhao, X.L.; Majumber, M.; Duan, W.H. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Kim, S.Y.; Hwangbo, M.; Hwangbo, S.; Jeong, Y.G. Research on optimizing ultrasonic frequencies for efficient single-walled carbon nanotube dispersion in water using a focused ultrasonic system. Diam. Relat. Mater. 2024, 147, 111284. [Google Scholar] [CrossRef]
- Shitanda, I.; Sugaya, K.; Baba, C.; Loew, N.; Yamagata, Y.; Miyamoto, K.; Niinobe, S.; Komatsuki, K.; Watanabe, H.; Itagaki, M. Rheo-impedance measurements for the dispersibility evaluation of electrode slurries. ACS Appl. Electron. Mater. 2023, 5, 4394–4400. [Google Scholar] [CrossRef]
- Chiba, T.; Amma, Y.; Takashiri, M. Heat source free water floating carbon nanotube thermoelectric generators. Sci. Rep. 2024, 11, 14707. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Hoshino, K.; Yamamoto, H.; Kaneko, K.; Okano, Y.; M.; Takashiri, M. Stretchable and flexible painted thermoelectric generators on Japanese paper using inks dispersed with p- and n-type single-walled carbon nanotubes. Sensors 2024, 24, 2946. [Google Scholar] [CrossRef] [PubMed]
- De Boer, G.B.J.; De Weerd, C.; Thoenes, D.; Goossene, H.W.J. Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering. Part. Part. Syst. Char. 1987, 4, 14–19. [Google Scholar] [CrossRef]
- Matsuyama, T.; Yamamoto, H. Particle shape and laser diffraction: A discussion of the particle shape problem. J. Dispers. Sci. Technol. 2005, 25, 409–416. [Google Scholar] [CrossRef]
- Caruso, M.R.; Calvino, M.M.; Šiler, P.; Cába, L.; Milioto, S.; Lisuzzo, L.; Lazzara, G.; Cavallaro, G. Self-standing biohybrid xerogels incorporating nanotubular clays for sustainable removal of pollutants. Small 2025, 21, 2405215. [Google Scholar] [CrossRef] [PubMed]
- Basat, M.B.; Lachman, N. Development of quality control methods for dispersibility and stability of single-wall carbon nanotubes in an aqueous medium. Nanomaterials 2021, 11, 2618. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, K.; Siroma, Z.; Mineshige, A.; Takeno, M.; Fukutsuka, T.; Abe, T.; Uchida, S. Electrochemical impedance spectroscopy part 1: Fundamentals. Electrochemistry 2022, 90, 102007. [Google Scholar] [CrossRef]
- Park, C.M.; Al-Hamadani, Y.A.J.; Heo, J.; Her, N.; Chu, K.H.; Jang, M.; Lee, S.; Yoon, Y. Aggregation kinetics of single walled carbon nanotubes influenced by the frequency of ultrasound irradiation in the aquatic environment. Ultrason. Sonochem. 2017, 39, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Lin, Y.; Li, L.; Zong, H.; Zhou, Y.; Zhao, S.; Zhang, Z.; Grobert, N.; Maciejewska, B.M.; Qin, L. Understanding interfacial dynamics: Hydrostatic pressure-induced sono-dispersion of carbon nanotubes. Surf. Interfaces 2024, 51, 104740. [Google Scholar] [CrossRef]
- Doorn, S.K.; Heller, D.; Usrey, M.; Barone, P.; Strano, M.S. Raman spectroscopy of single-walled carbon nanotubes: Probing electronic and chemical behavior. In Carbon Nanotubes Properties and Applications; O’Connell, M.J., Ed.; Taylor and Francis Group, LLC: Boca Raton, FL, USA, 2006; pp. 153–186. [Google Scholar]
- Baig, Z.; Mamat, O.; Mustapha, M.; Mumtaz, A.; Munir, K.S.; Sarfraz, M. Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrason. Sonochem. 2018, 45, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Cutler, M.; Leavy, J.F.; Fitzpatrick, R.L. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 1964, 133, A1143. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.L.; Lago, R.M.; Chen, Y.K.; Green, M.L.H.; Harris, P.J.F.; Tsang, S.C. Mechanical damage of carbon nanotubes by ultrasound. Carbon 1996, 34, 814–816. [Google Scholar] [CrossRef]
- Hilding, J.; Grulke, E.A.; Zhang, Z.G.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41. [Google Scholar] [CrossRef]
- Ma, W.K.A.; Chinesta, F.; Ammar, A.; Mackley, M.R. Rheological modeling of carbon nanotube aggregate suspensions. J. Rheol. 2008, 52, 1311–1330. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Y.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators. Nano Energy 2021, 89, 106487. [Google Scholar] [CrossRef]
- Choi, J.; Jung, Y.; Yang, S.J.; Oh, J.Y.; Oh, J.; Jo, K.; Son, J.G.; Moon, S.E.; Park, C.R.; Kim, H. Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano 2017, 11, 7608–7614. [Google Scholar] [CrossRef] [PubMed]
- Terashima, S.; Iwasa, Y.; Tanaka, N.; Fujigaya, T.; Iwase, E. Output characteristics of carbon nanotube thermoelectric generator with slitted kirigami structure. Materials 2025, 18, 656. [Google Scholar] [CrossRef] [PubMed]
- Mytafides, K.C.; Tzounis, L.; Karalis, G.; Formanek, P.; Paipetis, S.A. Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. J. Power Sources 2021, 507, 230323. [Google Scholar] [CrossRef]
- Kim, S.; Mo, J.-H.; Jang, K.-S. Solution-processed carbon nanotube buckypapers for foldable thermoelectric generators. ACS Appl. Mater. Interfaces 2019, 11, 35675–35682. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Amezawa, T.; Tanaka, S.; Takashiri, M. Improved heat dissipation of dip-coated single-walled carbon nanotube/Mesh sheets with high flexibility and free-standing strength for thermoelectric generators. Coatings 2024, 14, 126. [Google Scholar] [CrossRef]
- Yamamoto, H.; Amezawa, T.; Okano, Y.; Hoshino, K.; Ochiai, S.; Sunaga, K.; Miyake, S.; Takashiri, M. High thermal durability and thermoelectric performance with ultra-low thermal conductivity in n-type single-walled carbon nanotube films by controlling dopant concentration with cationic surfactant. Appl. Phys. Lett. 2025, 126, 063902. [Google Scholar] [CrossRef]
Characteristic of SWCNT-TEGs | Heat Source | Output Voltage [mV] | Output Current [mA] | ΔT [K] | Number of Sheets | Normalized Output Voltage [μV/(K·sheet)] | Ref. |
---|---|---|---|---|---|---|---|
Water-floating SWCNT-TEGs | No-use | 2.0 | 1.4 | 24 | 60 | This work | |
All-solid-state flexible material-based TEGs | Use | 850 | 2.6 | 34 | [63] | ||
All-CNT yarns-based TEGs | Use | 12 | 5 | 120 | 20 | [64] | |
Slitted Kirigami Structured SWCNT TEGs | Use | 9.9 | 6 | [65] | |||
Fully printed and flexible SWCNT TEGs | Use | 1110 | 1.7 | 300 | 84 | 44 | [66] |
Foldable SWCNT TEGs | Use | 20 | 0.25 | 10 | 75 | 27 | [67] |
Painted SWCNT-TEGs on Japanese paper | Use | 10.4 | 65 | 6 | 27 | [48] | |
Dip-coated SWCNT/mesh sheet TEGs | Use | 31.5 | 62 | 8 | 64 | [68] | |
Flexible SWCNT TEGs on polyimide | Use | 24.0 | 80 | 8 | 38 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okano, Y.; Ochiai, S.; Nakayama, H.; Nagai, K.; Takashiri, M. Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators. Materials 2025, 18, 3339. https://doi.org/10.3390/ma18143339
Okano Y, Ochiai S, Nakayama H, Nagai K, Takashiri M. Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators. Materials. 2025; 18(14):3339. https://doi.org/10.3390/ma18143339
Chicago/Turabian StyleOkano, Yutaro, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai, and Masayuki Takashiri. 2025. "Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators" Materials 18, no. 14: 3339. https://doi.org/10.3390/ma18143339
APA StyleOkano, Y., Ochiai, S., Nakayama, H., Nagai, K., & Takashiri, M. (2025). Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators. Materials, 18(14), 3339. https://doi.org/10.3390/ma18143339