Effect of Cd Doping on the Gas-Sensitive Properties of ZnSn(OH)6
Abstract
1. Introduction
2. Experiments and Calculations
2.1. Synthesis of ZHS and Cd-Doped ZHS (Cd@ZHS)
2.2. DFT Calculations
3. Results and Discussion
3.1. Characterization
3.2. Gas Sensing Enhancing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Huang, Y.; Cao, J.; Li, H.; Ho, W.; Lee, S.C. Constructing Z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under VIS-NIR light. J. Mater. Chem. A 2019, 7, 15782–15793. [Google Scholar] [CrossRef]
- Li, H.; Cui, Y.; Hong, W.; Xu, B. Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production. Chem. Eng. J. 2013, 228, 1110–1120. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Huang, D.; Meng, S.; Zhang, Z.; Li, L.; Miao, T.; Chen, S. Trace amount of SnO2-decorated ZnSn(OH)6 as highly efficient photocatalyst for decomposition of gaseous benzene: Synthesis, photocatalytic activity and the unrevealed synergistic effect between ZnSn(OH)6 and SnO2. ACS Catal. 2016, 6, 957–968. [Google Scholar] [CrossRef]
- Zhang, R.; He, Y.; Xu, L. Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 17979–17985. [Google Scholar] [CrossRef]
- Liu, J.; Gu, M.; Ouyang, L.; Wang, H.; Yang, L.; Zhu, M. Sandwich-like SnS/Polypyrrole ultrathin nanosheets as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 13, 8502–8531. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, J.S.; Lim, D.; Jeong, W. Zinc hydroxystannate coated by aluminum phosphate for improving its compatibility in flame-retardant poly (acrylonitrile-co-vinylidene chloride). Fiber. Polym. 2021, 22, 2156–2162. [Google Scholar] [CrossRef]
- Pan, W.-H.; Yang, W.-J.; Wei, C.-X.; Hao, L.-Y.; Lu, H.-D.; Yang, W. Recent advances in zinc hydroxystannate-based flame retardant polymer blends. Polymers 2022, 14, 2175. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.-X.; Xie, J.; Duan, M.; Tang, J.-L. CO sensing properties of a cubic ZnSn(OH)6 synthesized by hydrothermal method. Chin. Chem. Lett. 2016, 22, 464–466. [Google Scholar] [CrossRef]
- Du, L.; Gu, K.; Zhu, M.; Zhang, J.; Zhang, M. Perovskite-type ZnSn(OH)6 hollow cubes with controllable shells for enhanced formaldehyde sensing performance at low temperature. Sens. Actuator B Chem. 2019, 288, 298–306. [Google Scholar] [CrossRef]
- Dong, S.; Xia, L.; Zhang, F.; Li, F.; Wang, Y.; Cui, L.; Feng, J.; Sun, J. Effects of pH value and hydrothermal treatment on the microstructure and natural-sunlight photocatalytic performance of ZnSn(OH)6 photocatalyst. J. Alloys Compd. 2019, 810, 151955. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; He, M.; Hu, Y.; Ruan, H.; Lin, Y.; Hu, J.; Zheng, Y.; Shao, Y. High photocatalytic performance of zinc hydroxystannate toward benzene and meethyl orange. Appl. Catal. B 2012, 113–114, 134–140. [Google Scholar] [CrossRef]
- Hu, J.; Ma, T.; Shen, W.; Wang, J.; Chen, Z.; Liang, L.; Zhang, Y.; Chen, J.; Li, Z. ZnSn(OH)6 nanocube/Zn2SnO4 nanowires yolk-shell hierarchical structure with tunable band gap for deep-UV photodetection. J. Alloys Compd. 2022, 920, 165800. [Google Scholar] [CrossRef]
- Yin, J.; Gao, F.; Wei, C.; Lu, Q. Controlled growth and applications of complex metal oxide ZnSn(OH)6 polyhedra. Inorg. Chem. 2012, 51, 10990–10995. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tokudome, Y.; Tsuda, H.; Takahashi, M. Morphology control of BiFeO3 aggregatesviahydrothermal synthesis. J. Appl. Crystallogr. 2016, 49, 168–174. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Dong, M.; Fan, S.; Zhao, T.; Wang, J.; Fan, W. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 2019, 48, 885–907. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Lagos, M.J.; Manichev, V.; Fullon, R.; Song, X.; Voiry, D.; Chakraborty, S.; Zhang, W.; Batson, P.E.; et al. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958–9964. [Google Scholar] [CrossRef]
- Wang, F.; He, J. Speeding protons with metal vacancies. Science 2020, 370, 525–526. [Google Scholar] [CrossRef]
- Male, J.; Agne, M.T.; Goyal, A.; Anand, S.; Witting, I.T.; Stevanović, V.; Jeffrey Snyder, V.G. The importance of phase equilibrium for doping efficiency: Iodine doped PbTe. Mater. Horiz. 2019, 6, 1444–1453. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Y.; Schulman, D.S.; Zhang, T.; Fujisawa, K.; Lin, Z.; Lei, Y.; Elias, A.L.; Sinnott, S.B.; Terrones, M. Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport. Sci. Adv. 2019, 5, eaav5003. [Google Scholar] [CrossRef]
- Liang, X.; Zhao, J.; Wang, T.; Zhang, Z.; Qu, M.; Wang, C. Constructing a Z Scheme heterojunction photocatalyst of GaPO4/α-MoC/Ga2O3 without mingling type-II heterojunction for CO2 reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 33034–33044. [Google Scholar] [CrossRef]
- Wageh, S.; Al-Ghamdi, A.A.; Jafer, R.; Li, X.; Zhang, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667–669. [Google Scholar] [CrossRef]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV Light illumination. ACS Sens. 2019, 4, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X.; Liu, J.; Zhang, D. Ultrasensitive and fully reversible NO2 gas sensing based on p-Type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 3, 1719–1726. [Google Scholar] [CrossRef]
- Zhang, H.; Song, P.; Han, D.; Yan, H.; Yang, Z.; Wang, Q. Controllable synthesis of novel ZnSn(OH)6 hollow polyhedral structures with superior ethanol gas-sensing performance. Sens. Actuator B Chem. 2015, 209, 384–390. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Tao, T.; Leng, B.; Xu, W.; Mao, L. Structural inheritance and change from ZnSn(OH)6 to ZnSnO3 compounds used for ethanol sensors: Effects of oxygen vacancies, temperature and UV on gas-sensing properties. J. Alloys Compd. 2020, 829, 154445–154455. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, S.Y.; Jiao, H.Y.; Wang, B.Q.; Zhang, G.H.; Gengzang, D.J.; Liu, L.W.; Yang, H.M. Sodium alginate assisted hydrothermal method to prepare praseodymium and cerium co-doped ZnSn(OH)6 hollow microspheres and synergistically enhanced ethanol sensing performance. Sens. Actuator B Chem. 2017, 252, 295–305. [Google Scholar] [CrossRef]
- Yuan, F.; Ma, S.; Wen, Y.; Liu, W.; Pei, S.; Wang, S.; Zhang, Q.; Shi, J. The experimental and theoretical study of Al doped ZnSn(OH)6 to improve gas sensitivity. J. Alloys Compd. 2022, 932, 167563–167571. [Google Scholar] [CrossRef]
- Yuan, F.; Ma, S.; Wang, S.; Wen, Y.; Liu, W.; Pei, S.; Zhang, Q. Experimental and theoretical research on improving the gas sensitivity of ethanol based on Bi-doped ZnSn(OH)6. Mater. Res. Bull. 2023, 164, 112253–112260. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Cote, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Yu, X.; Lu, H.; Li, Q.; Zhao, Y.; Chen, D.; Fan, B.; Wang, H.; Yang, D.; Xu, H.; Zhang, R. Synthesis of ZnSn(OH)6 regular octahedrons by a simple hydrothermal process. Cryst. Res. Technol. 2011, 46, 1079–1085. [Google Scholar] [CrossRef]
- Sun, C.; Beaunier, P.; Parola, V.L.; Liotta, L.F.; Costa, P.D. Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 methanation. ACS Appl. Nano Mater. 2020, 3, 12355–12368. [Google Scholar] [CrossRef]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.; Liu, X. Rare-rarth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef]
- Yuan, F.; Ma, S.; Wen, Y.; Liu, W.; Pei, S.; Wang, S.; Zhang, Q. The impact of Zn vacancy on gas sensitivity of ZnSn(OH)6. Appl. Surf. Sci. 2023, 614, 156058–156065. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Yang, M.; Wang, J.; Shi, J. Carbon quantum dots sensitized ZnSn(OH)6 for visible light-driven photocatalytic water purification. Appl. Surf. Sci. 2019, 466, 515–524. [Google Scholar] [CrossRef]
- Liu, C.; Lu, H.; Zhang, J.; Gao, J.; Zhu, G.; Yang, Z.; Yin, F.; Wang, C. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sens. Actuator B Chem. 2018, 263, 557–567. [Google Scholar] [CrossRef]
- Suematsu, K.; Sasaki, M.; Ma, N.; Yuasa, M.; Shimanoe, K. Antimony-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sens. 2016, 1, 913–920. [Google Scholar] [CrossRef]
- Dong, S.; Cui, L.; Zhang, W.; Xia, L.; Zhou, S.; Russell, C.K.; Fan, M.; Feng, J.; Sun, J. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater. Chem. Eng. J. 2020, 384, 123279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Yu, Y.; Gu, H.; Wang, G.; Yuan, F. Effect of Cd Doping on the Gas-Sensitive Properties of ZnSn(OH)6. Materials 2025, 18, 3176. https://doi.org/10.3390/ma18133176
Wen Y, Yu Y, Gu H, Wang G, Yuan F. Effect of Cd Doping on the Gas-Sensitive Properties of ZnSn(OH)6. Materials. 2025; 18(13):3176. https://doi.org/10.3390/ma18133176
Chicago/Turabian StyleWen, Yufeng, Yanlin Yu, Huaizhang Gu, Guilian Wang, and Fangqiang Yuan. 2025. "Effect of Cd Doping on the Gas-Sensitive Properties of ZnSn(OH)6" Materials 18, no. 13: 3176. https://doi.org/10.3390/ma18133176
APA StyleWen, Y., Yu, Y., Gu, H., Wang, G., & Yuan, F. (2025). Effect of Cd Doping on the Gas-Sensitive Properties of ZnSn(OH)6. Materials, 18(13), 3176. https://doi.org/10.3390/ma18133176