Adhesion Properties Between Rubber Asphalt Mastic and Aggregate: Verification from Surface Free Energy Theory and Molecular Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Binder
2.1.2. Rubber Powder
2.1.3. Mineral Powder
2.2. Preparation of Rubber Asphalt (Mastic)
2.3. Surface Free Energy Theory
3. Molecular Dynamics Simulation
3.1. Construction of the Rubber Asphalt Mastic Molecular Model
3.1.1. Molecular Model of Asphalt
3.1.2. Molecular Model of Asphalt
3.1.3. Molecular Model of Mineral Powder
3.1.4. Molecular Model of Rubber Asphalt Mastic
3.2. Construction of the Rubber Asphalt Mastic-Aggregate Molecular Model
3.3. Rubber Asphalt Mastic–Water–Aggregate Interface Molecular Model
3.4. Simulation Methods
3.5. Evaluation Indicators
3.5.1. Adhesive Work
3.5.2. Debonding Work
3.5.3. Energy Ratio (ER)
4. Results and Discussion
4.1. Results Analysis of Surface Free Energy
4.1.1. Surface Energy Component
4.1.2. Adhesion Work
4.1.3. Peeling Work
4.2. Interaction Energy Between Rubber Asphalt (Mastic)–Aggregate
4.3. Adhesion Behavior Between Asphalt and Aggregate Under Dry Conditions
4.4. Debonding Work Between Asphalt and Aggregate Under Wet Conditions
4.5. Energy Ratio Between Asphalt and Aggregate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selsal, Z.; Karakas, A.S.; Sayin, B. Effect of pavement thickness on stress distribution in asphalt pavements under traffic loads. Case Stud. Constr. Mater. 2022, 16, e01107. [Google Scholar] [CrossRef]
- Germin-Aizac, J.; Maitre, A.; Balducci, F.; Montlevier, S.; Marques, M.; Tribouiller, J.; Demeilliers, C.; Persoons, R. Bitumen fumes and PAHs in asphalt road paving: Emission characteristics, determinants of exposure and environmental impact. Environ. Res. 2023, 228, 115824. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, M.; Zhao, Y.; Wu, S.; Fan, Y.; Gan, Z.; Zhang, Y. Comprehensive assessment of the durability deterioration of asphalt pavement in salt environment: A literature review. Case Stud. Constr. Mater. 2022, 17, e01706. [Google Scholar] [CrossRef]
- Malinowski, S.; Woszuk, A.; Franus, W. Modern two-component modifiers inhibiting the aging process of road bitumen. Constr. Build. Mater. 2023, 409, 133838. [Google Scholar] [CrossRef]
- Guo, D.; Yang, S.; Xu, M.; Li, X.; Sun, X.; Wang, T.; An, Y.; Huang, S. Preparation and performance study of PPA-REOB composite modified bitumen. Constr. Build. Mater. 2025, 468, 140361. [Google Scholar] [CrossRef]
- Kazemian, M.; Raeisi, E.H.; Ghezelhesar, A.D.; Hajimirzajan, A.; Fischer, S. Effects of Crumb Rubber-Modified Asphalt as a Pavement Layer in Railways: A Scoping Review. Infrastructures 2025, 10, 84. [Google Scholar] [CrossRef]
- Hosseinnezhad, S.; Kabir, S.F.; Oldham, D.; Mousavi, M.; Fini, E.H. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. J. Clean. Prod. 2019, 225, 82–89. [Google Scholar] [CrossRef]
- Picado-Santos, L.G.; Capitão, S.D.; Neves, J.M.C. Crumb rubber asphalt mixtures: A literature review. Constr. Build. Mater. 2020, 247, 118577. [Google Scholar] [CrossRef]
- Lyu, L.; Fini, E.H.; Pei, J.; Poulikakos, L.D. Aging evolution and sustainability implications of crumb rubberized asphalt binder: A state-of-the-art. J. Clean. Prod. 2024, 434, 140202. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Han, F.; Lin, Z.; Zhao, Z.; Jin, X.; Liu, Y. Investigation of the effects of chemical modification and oxidative aging on the properties and compatibility of rubber asphalt based on thermodynamic principles. J. Clean. Prod. 2023, 428, 139070. [Google Scholar] [CrossRef]
- Guo, F.; Pei, J.; Huang, G.; Zhang, J.; Falchetto, A.C.; Korkiala-Tanttu, L. Investigation of the adhesion and debonding behaviors of rubber asphalt and aggregates using molecular dynamics simulation. Constr. Build. Mater. 2023, 371, 130781. [Google Scholar] [CrossRef]
- Xie, T.; He, Z.; Yu, H.; Ma, Y.; Shi, C.; Zhang, C.; Ge, J.; Dai, W. Evaluation of styrene butadiene rubber asphalt modification mechanism and adhesion effect based on molecular simulation. Fuel 2024, 364, 131023. [Google Scholar] [CrossRef]
- Li, N.; Wang, J.; Si, W.; Hu, D. Quantitative analysis of adhesion characteristics between crumb rubber modified asphalt and aggregate using surface free energy theory. Materials 2022, 15, 5735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Long, N.; Liu, Y.; Wang, L. Cross-scale study on the influence of moisture-temperature coupling conditions on adhesive properties of rubberized asphalt and steel slag. Constr. Build. Mater. 2022, 332, 127401. [Google Scholar] [CrossRef]
- Jiao, B.; Chen, J.; Gong, M. Investigation of interfacial degradation mechanism and debonding behavior for degraded rubber asphalt-aggregate molecular system using a molecular dynamics method. J. Clean. Prod. 2024, 451, 142123. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, G.; Wang, S.; Wang, X.; Wang, Z.; Zhang, J.; Falchetto, A.C. Variation of SARA fractions of crumb rubber modified asphalt binder-aggregate interface system and its correlation with adhesion properties. Constr. Build. Mater. 2024, 435, 136902. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Xiao, F.; Hettiarachchi, C.; Abdel-Wahed, T. Bond strength in dry condition of reclaimed asphalt modified by crumb rubber modified binder. J. Adhes. 2023, 99, 691–720. [Google Scholar] [CrossRef]
- Xu, W.; Qiu, X.; Xiao, S.; Hu, G.; Wang, F.; Yuan, J. Molecular dynamic investigations on the adhesion behaviors of asphalt mastic–aggregate interface. Materials 2020, 13, 5061. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Q.; Ji, P.; Wang, J.; Xiao, Y. Influence of filler type and rheological properties of asphalt mastic on the asphalt mastic–aggregate interaction. Materials 2023, 16, 574. [Google Scholar]
- Men, B.; Guo, F.; Kang, X.; Yue, J. Research on the Adhesion Properties of Fast-Melting SBS-Modified Asphalt–Aggregate Based on Surface Free Energy Theory. Materials 2023, 16, 7601. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Min, Z.; Chen, F.; Huang, W. Adhesion behavior and microscopic mechanism of epoxy asphalt-RAP aggregate interface. Constr. Build. Mater. 2024, 457, 139361. [Google Scholar] [CrossRef]
- Shi, C.; Ge, J.; Yu, H.; Qian, G.; Zhou, H.; Ma, Y.; Nian, T.; Yao, D.; Wang, Y.; Zhong, Y. Interfacial adhesion properties and debonding mechanisms in rejuvenated asphalt mixtures. Constr. Build. Mater. 2024, 425, 135973. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Li, Y.X.; Guan, H.F.; Jing, M. Adhesion Characteristics of Warm-Mix Crumb Rubber-Modified Asphalt-Steel Slag Interface under Water Erosion. J. Mater. Civ. Eng. 2024, 36, 04024270. [Google Scholar] [CrossRef]
- Ji, H.; Li, B.; Yao, T.; Liu, Z.; Han, J.; Li, A. Polyurethane and nano-TiO2 modifiers mitigate aging of asphalt binders by inhibiting aggregation of polar molecules: A molecular dynamics study. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132654. [Google Scholar] [CrossRef]
- Yaphary, Y.L.; Leng, Z.; Wang, H.; Ren, S.; Lu, G. Characterization of nanoscale cracking at the interface between virgin and aged asphalt binders based on molecular dynamics simulations. Constr. Build. Mater. 2022, 335, 127475. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Liu, Y. Molecular dynamics study on the effect of mineral composition on the interface interaction between rubberized asphalt and aggregate. J. Mater. Civ. Eng. 2022, 34, 04022032. [Google Scholar] [CrossRef]
- Yu, H.; Ge, J.; Qian, G.; Zhang, C.; Dai, W.; Li, P. Evaluation on the rejuvenation and diffusion characteristics of waste cooking oil on aged SBS asphalt based on molecular dynamics method. J. Clean. Prod. 2023, 406, 136998. [Google Scholar] [CrossRef]
- Hu, K.; Yu, C.; Chen, Y.; Li, W.; Wang, D.; Zhang, W. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: Insight from molecular dynamics simulation. J. Mol. Model. 2021, 27, 170. [Google Scholar] [CrossRef]
- Jiao, B.; Pan, B.; Liu, F.; Yin, P.; Li, Z. Evaluating the interfacial properties between crumb rubber modified asphalt and aggregates using molecular dynamics simulation methods. Constr. Build. Mater. 2023, 400, 132809. [Google Scholar] [CrossRef]
- Han, J.; Li, B.; Ji, H.; Guo, F.; Wei, D.; Cao, S.; Zhang, W.; Chen, X. Interfacial adhesion between recycled asphalt binder and aggregates considering aggregate surface anisotropy: A molecular dynamics simulation. Constr. Build. Mater. 2024, 438, 137176. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Q.; Qiu, X.; Xu, W.; Xiao, S.; Gu, Y.; Ye, Y. An investigation toward adhesion characteristics of emulsified asphalt residue–aggregate interface through MD simulation. Constr. Build. Mater. 2024, 438, 137251. [Google Scholar] [CrossRef]
- Meng, Y.J.; Lai, J.; Mo, S.Y.; Fang, G.; Deng, S.; Wei, X.; Yang, F. Investigating the deterioration mechanism of adhesion between asphalt and aggregate interface under acid rain erosion. Appl. Surf. Sci. 2023, 639, 158171. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, Z.; Ma, F.; Zhao, P.; Hou, Y.; Jiang, X.; Peng, C. Effect of water molecular behavior on adhesion properties of asphalt-aggregate interface. Constr. Build. Mater. 2023, 402, 133028. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, Y.; Chen, A.; Wu, S.; Li, Y.; Xu, H.; Wang, H.; Yang, Y.; Amirkhanian, S. Adhesion failure mechanism of asphalt-aggregate interface under an extreme saline environment: A molecular dynamics study. Appl. Surf. Sci. 2024, 645, 158851. [Google Scholar] [CrossRef]
- Dan, L.; Chuanfeng, Z.; Yong, Q.; Heng, B.; Keyao, L.; Junfei, H. Analysing the effects of the mesoscopic characteristics of mineral powder fillers on the cohesive strength of asphalt mortars at low temperatures. Constr. Build. Mater. 2014, 65, 330–337. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Chen, Z.; Cui, P.; Liu, J.; Wang, N. Morphological characteristics of mineral filler and their influence on active adhesion between aggregates and bitumen. Constr. Build. Mater. 2022, 323, 126520. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I. The influence of the mineral filler on the adhesion between aggregates and bitumen. Int. J. Adhes. Adhes. 2015, 58, 53–58. [Google Scholar] [CrossRef]
- Yu, H.; Ge, J.; Qian, G.; Shi, C.; Zhang, C.; Dai, W.; Xie, T.; Nian, T. Evaluation of the interface adhesion mechanism between SBS asphalt and aggregates under UV aging through molecular dynamics. Constr. Build. Mater. 2023, 409, 133995. [Google Scholar] [CrossRef]
- Long, Z.; You, L.; Tang, X.; Ma, W.; Ding, Y.; Xu, F. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Constr. Build. Mater. 2020, 255, 119354. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, J.; Chen, Z.; Niu, Z.; Li, Y. Interfacial performance of asphalt-aggregate system under different conditions based on molecular dynamics simulation. J. Mater. Civ. Eng. 2023, 35, 04023116. [Google Scholar] [CrossRef]
- Malinowski, S.; Woszuk, A.; Wróbel, M.; Makowska, M.; Franus, W.; Zofka, A. Bitumen binders modified with chemically-crosslinked chitosan. Road Mater. Pavement Des. 2023, 24 (Suppl. 1), 3–18. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, J.; Yan, E. Intrinsic temperature and moisture sensitive adhesion characters of asphalt-aggregate interface based on molecular dynamics simulations. Constr. Build. Mater. 2021, 292, 123462. [Google Scholar] [CrossRef]
Experiment | Requirements | Measured Value |
---|---|---|
Penetration (25 °C, 100 g, 5 s)/0.1 mm | 80–100 | 89 |
Ductility 10 °C, 5 cm/min | ≥100 | >100 |
Softening point/°C | 43–53 | 45.4 |
Dynamic viscosity 135 °C/Pa·s | ≤3 | 2.7 |
Experiment | Requirements | Measured Value |
---|---|---|
Rubber hydrocarbon content (%) | ≥42 | 58 |
Carbon black content (%) | ≥22 | 31.58 |
Acetone extract (%) | 6–16 | 8.35 |
Ash content (%) | ≤8 | 5.13 |
Experiment | Requirements | Measured Value |
---|---|---|
Relative density (g/cm3) | ≥2.50 | 2.73 |
Hydrophilicity coefficient (%) | <1 | 0.8 |
Elemental Composition | CaO | SiO2 | MgO | Al2O3 | K2O | TiO | MnO | Fe2O3 | RuO2 |
---|---|---|---|---|---|---|---|---|---|
Content/% | 52.63 | 26.56 | 19.36 | 0.00 | 0.00 | 0.00 | 0.01 | 1.10 | 0.34 |
Reagent Type | Surface Energy Parameters (mJ/m2) | |||
---|---|---|---|---|
Distilled Water | 72.9 | 21.3 | 25.8 | 25.7 |
Glycerin | 65 | 34 | 3.96 | 56.2 |
Formamide | 56 | 39 | 2.27 | 39.5 |
Aggregate | |||||
---|---|---|---|---|---|
Limestone | 34.85 | 22.55 | 11.04 | 1.49 | 20.45 |
Type of Component | Molecular Formula | Number of Molecules | |
---|---|---|---|
Saturate | SA-Ho | C29H50 | 5 |
SA-Sq | C30H62 | 4 | |
Aromatic | AR-Do | C30H46 | 18 |
AR-Ph | C35H44 | 15 | |
Resin | RE-Be | C18H10S2 | 15 |
RE-Pv | C36H57N | 4 | |
RE-Th | C40H60S | 4 | |
RE-Qu | C40H59N | 4 | |
RE-Tr | C29H50O | 5 | |
Asphaltene | AS-Ph | C42H54O | 3 |
AS-Py | C66H81N | 2 | |
AS-Th | C51H62S | 3 |
Crystal Model | Chemical Formula | Lattice Parameters | Space Group | Group Name |
---|---|---|---|---|
SiO2 | a = b = 4.913 Å c = 5.4052 Å | α = β = 90° γ = 120° | P3121 | |
CaCO3 | a = b = 4.99 Å c = 17.061 Å | α = β= 90° γ = 120° | R-3C |
Type of Asphalt Mastic | Number of Molecules | ||
---|---|---|---|
NR | CaCO3 Cluster | SiO2 Cluster | |
RA | 4 | - | - |
RS1 | 4 | - | 1 |
RS2 | 4 | - | 2 |
RS3 | 4 | - | 3 |
RC1 | 4 | 1 | - |
RC2 | 4 | 2 | - |
RC3 | 4 | 3 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Cao, S.; Guo, F.; Wu, X. Adhesion Properties Between Rubber Asphalt Mastic and Aggregate: Verification from Surface Free Energy Theory and Molecular Dynamics. Materials 2025, 18, 3115. https://doi.org/10.3390/ma18133115
Yin H, Cao S, Guo F, Wu X. Adhesion Properties Between Rubber Asphalt Mastic and Aggregate: Verification from Surface Free Energy Theory and Molecular Dynamics. Materials. 2025; 18(13):3115. https://doi.org/10.3390/ma18133115
Chicago/Turabian StyleYin, Huajia, Shenyang Cao, Fucheng Guo, and Xu Wu. 2025. "Adhesion Properties Between Rubber Asphalt Mastic and Aggregate: Verification from Surface Free Energy Theory and Molecular Dynamics" Materials 18, no. 13: 3115. https://doi.org/10.3390/ma18133115
APA StyleYin, H., Cao, S., Guo, F., & Wu, X. (2025). Adhesion Properties Between Rubber Asphalt Mastic and Aggregate: Verification from Surface Free Energy Theory and Molecular Dynamics. Materials, 18(13), 3115. https://doi.org/10.3390/ma18133115