Effect of Middle Ear Prosthesis Diameter in Platinotomy and Partial Platinectomy on Hearing Gain: A Finite Element Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Geometric Models for Stapedotomy and Partial Stapedectomy
2.2. Materials
2.3. Analytical Evaluation of the Air Conduction (AC)
2.4. FEA Modeling
3. Results
3.1. Validation of the FE Model
3.2. Determination of Piston Displacements in Stapedotomy and Partial Stapedectomy
3.3. Calculation of ABG in Stapedotomy and Partial Stapedectomy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajan, D.; Cureoglu, S.; Adams, M.E.; Monsanto, R. Otosclerosis and the evolution of stapes surgery: A historical and otopathological study. Laryngoscope Investig. Otolaryngol. 2024, 9, e70045. [Google Scholar] [CrossRef] [PubMed]
- Kasliwal, N.; Kasliwal, A.; Ahuja, P. Retrospective Evaluation of Otosclerosis and Stapes Surgery: Changing Trends Over 50 Years. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 2244–2249. [Google Scholar] [CrossRef]
- Rasheed, K.; Badar, S.A.; Khan, M.A.; Khan, R.S.; Shahid, S.; Aslam, M.A.; Asif, S.; Sadiq, J.; Shanawar, M.; Sajjad, A. The Comparison of Hearing loss in Otosclerosis Patients in response to Stapedectomy: Hearing loss in Otosclerosis Patients. Pak. J. Health Sci. 2023, 4, 66–70. [Google Scholar] [CrossRef]
- Assiri, M.; Khurayzi, T.; Alshalan, A.; Alsanosi, A. Cochlear implantation among patients with otosclerosis: A systematic review of clinical characteristics and outcomes. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 3327–3339. [Google Scholar] [CrossRef]
- Tsetsos, N. Otosclerosis. In Otolaryngology Study Guide: A Case-Based Approach; Springer Nature: Cham, Switzerland, 2025; pp. 69–73. [Google Scholar]
- Darjazini Nahas, L.; Trabulsi, M.; Alsawah, R.; Hamsho, A.; Al-Masalmeh, M.S.; Omar, A. The Clinical Picture of Otosclerosis and the Surgery Effect on Bone Conduction Thresholds on Audiograms. Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 3628–3635. [Google Scholar] [CrossRef]
- Priyono, H.; Sari, A.A.; Zizlavsky, S.; Alviandi, W.; Ranakusuma, R.W. Management of otosclerosis with obliterated footplate and round window involvement. Oto Rhino Laryngol. Indones. 2022, 52, 156–163. [Google Scholar] [CrossRef]
- Gherasie, L.M.; Voiosu, C.; Bartel, R.; Hainăroșie, R.; Ioniță, I.G.; Zica, D.M.; Zainea, V. Techniques for otosclerosis surgery: Ear surgery from the microscope to the endoscope A literature review. J. Otol. 2024, 19, 120–126. [Google Scholar] [CrossRef]
- Oren, K.; Klein, A.; Soikher, E.; Tamir, S.O. Bilateral Double Window Otosclerotic Obliteration: A Case Report and Literature Review. Indian J. Otol. 2024, 30, 143–146. [Google Scholar] [CrossRef]
- Tan, H.E.I.; Santa Maria, P.L.; Wijesinghe, P.; Francis Kennedy, B.; Allardyce, B.J.; Eikelboom, R.H.; Atlas, M.D.; Dilley, R.J. Optical coherence tomography of the tympanic membrane and middle ear: A review. Otolaryngol. Head Neck Surg. 2018, 159, 424–438. [Google Scholar] [CrossRef]
- Ordóñez Ordóñez, L.E.; Cerón Perdomo, D.; González Saboya, C.P.; Osorio Mejía, F.; Medina-Parra, J.; Angulo Martínez, E.S. Conventional vs. diode laser stapedotomy: Audiological outcomes and clinical safety. Eur. Arch. Oto-Rhino-Laryngol. 2024, 281, 3443–3452. [Google Scholar] [CrossRef]
- Hoskison, E.E.; Harrop, E.; Jufas, N.; Kong, J.H.; Patel, N.P.; Saxby, A.J. Endoscopic stapedotomy: A systematic review. Otol. Neurotol. 2021, 42, e1638–e1643. [Google Scholar] [CrossRef] [PubMed]
- Albazee, E.; Alajmi, H.; Aldoukhi, A.; Alali, A.W. Endoscopic Versus Microscopic Stapedotomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Otolaryngol. Head Neck Surg. 2025, 172, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Kwacz, M.; Marek, P.; Borkowski, P.; Gambin, W. Effect of different stapes prostheses on the passive vibration of the basilar membrane. Hear. Res. 2014, 310, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Odat, H.; Kanaan, Y.; Alali, M.; Al-Qudah, M. Hearing results after stapedotomy for otosclerosis: Comparison of prosthesis variables. J. Laryngol. Otol. 2021, 135, 28–32. [Google Scholar] [CrossRef]
- Petrova, P.N.; Markova, M.A. The Effect of Plastic Deformation Technology on Mechanical Properties of Polytetrafluoroethylene-Based Composites. Inorg. Mater. Appl. Res. 2024, 15, 1508–1515. [Google Scholar] [CrossRef]
- Martinez, J.S.; Peterson, S.; Hoel, C.A.; Erno, D.J.; Murray, T.; Boyd, L.; Her, J.-H.; Mclean, N.; Davis, R.; Ginty, F.; et al. High resolution DLP stereolithography to fabricate biocompatible hydroxyapatite structures that support osteogenesis. PLoS ONE 2022, 17, e0272283. [Google Scholar] [CrossRef]
- Scarpa, A.; Marra, P.; Ralli, M.; Viola, P.; Gioacchini, F.M.; Chiarella, G.; Salzano, F.A.; De Luca, P.; Ricciardiello, F.; Cassandro, C.; et al. Comparison of different oval window sealing materials in stapes surgery: Systematic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 5521–5533. [Google Scholar] [CrossRef]
- Abdmnem, S.; Alzamel, W. Comparative study between Teflon and Robinson stainless steel Prostheses in ototsclerosis surgery. Zagazig Univ. Med. J. 2021, 27, 1575–1581. [Google Scholar]
- Tabrizian, P.; Ghorbani, F.; Sun, H.; Qambrani, A.; Armstrong, J.P.; Sui, T.; Davis, S.; Su, B. Bioactive and biocompatible nacre-like apatite-wollastonite/polymer composites with enhanced toughness and load-bearing capability. J. Eur. Ceram. Soc. 2025, 45, 117397. [Google Scholar] [CrossRef]
- Weaver, J.S.; Kalidindi, S.R.; Wegst, U.G. Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Mater. 2017, 132, 182–192. [Google Scholar] [CrossRef]
- Diaz, O.G.; Luna, G.G.; Liao, Z.; Axinte, D. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity. Int. J. Mach. Tools Manuf. 2019, 139, 24–36. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, T.; Gao, S.; Yin, X.; Zhang, G. Enhancing thermal conductivity of hBN/SiC/PTFE composites with low dielectric properties via pulse vibration molding. Macromol. Rapid Commun. 2023, 44, 2300136. [Google Scholar] [CrossRef] [PubMed]
- Spałek, J.; Ociepa, P.; Deptuła, P.; Piktel, E.; Daniluk, T.; Król, G.; Góźdź, S.; Bucki, R.; Okła, S. Biocompatible materials in otorhinolaryngology and their antibacterial properties. Int. J. Mol. Sci. 2022, 23, 2575. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Samiyappan, R.; Aadhikesavan, H. Synthesis, Characterization, and Antimicrobial Activity of Sr-HAP Powders for Biomedical Applications. In Handbook of Research on Advanced Functional Materials for Orthopedic Applications; IGI Global: Hershey, PA, USA, 2023; pp. 230–267. [Google Scholar]
- Lim, J.; Goo, W.; Kang, D.W.; Oh, S.H.; Kim, N. Effect of closing material on hearing rehabilitation in stapedectomy and stapedotomy: A finite element analysis. Front. Neurosci. 2023, 17, 1064890. [Google Scholar] [CrossRef]
- Khatir, O.; Fekih, S.M.; Sahli, A.; Boudjemaa, I.; Benkhettou, A.; Salem, M.; Bouiadjra, B.B. Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions. Mech. Adv. Mater. Struct. 2025, 32, 478–487. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Mohammadi, H.; Rosowski, J.J.; Cheng, J.T.; Maftoon, N. Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci. Rep. 2023, 13, 7329. [Google Scholar] [CrossRef]
- Parveen, S.; Jain, S.; Kumar, S.; Acharya, S.; Talwar, D. Evolution of middle ear modelling techniques: A review. Cureus 2021, 13, e20829. [Google Scholar] [CrossRef]
- Yüksel, M.B.; Koyuncuoğlu, A.; Külah, H. Thin-film PZT-based multi-channel acoustic MEMS transducer for cochlear implant applications. IEEE Sens. J. 2021, 22, 3052–3060. [Google Scholar] [CrossRef]
- Liang, J.; Motallebzadeh, H.; Puria, S.; Guan, X. Finite-element modeling of the effect of superior canal dehiscence on intracochlear pressures in bone conduction. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2024; Volume 3062. [Google Scholar]
- Caminos, L.; Garcia-Manrique, J.; Lima-Rodriguez, A.; Gonzalez-Herrera, A. Analysis of the mechanical properties of the human tympanic membrane and its influence on the dynamic behaviour of the human hearing system. Appl. Bionics Biomech. 2018, 2018, 1736957. [Google Scholar] [CrossRef]
- Alimi, H.O. Computation of Two-Dimensional Fluid Motion in the Cochlea. Master’s Thesis, University of Massachusetts Lowell, Lowell, MA, USA, 2021. [Google Scholar]
- Ataide, A.L.D.; Bichinho, G.L.; Patruni, T.M. Audiometric evaluation after stapedotomy with Fisch titanium prosthesis. Braz. J. Otorhinolaryngol. 2013, 79, 325–335. [Google Scholar] [CrossRef]
- Asakura, T.; Ito, R.; Hirabayashi, M.; Kurihara, S.; Kurashina, Y. Mechanical effect of reconstructed shapes of autologous ossicles on middle ear acoustic transmission. Front. Bioeng. Biotechnol. 2023, 11, 1204972. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Keefe, D.H.; Gan, R.Z. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear. J. Acoust. Soc. Am. 2016, 139, 1735–1746. [Google Scholar] [CrossRef] [PubMed]
- Assif, S.; Faiz, A.; Aziz, C.; LB, P.K.; Hajjaji, A. Validation using the in vivo experiment of the 3D model of the human ear using the equivalent mechanical impedance of the Mass-Spring-Damper System. Eur. Phys. J. Appl. Phys. 2022, 97, 74. [Google Scholar] [CrossRef]
- Thompson, C.W.; Rohani, S.A.; Dirckx, J.J.; Agrawal, S.K.; Ladak, H.M. Finite element modelling of the human middle ear using synchrotron-radiation phase-contrast imaging. Comput. Biol. Med. 2023, 157, 106747. [Google Scholar] [CrossRef]
- Areias, B.; Santos, C.; Natal Jorge, R.M.; Gentil, F.; Parente, M.P. Finite element modelling of sound transmission from outer to inner ear. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 999–1007. [Google Scholar] [CrossRef]
- Zhang, C.S.; Yang, A.W.; Zhang, A.L.; Fu, W.B.; Thien, F.C.; Lewith, G.; Xue, C.C. Ear-acupressure for allergic rhinitis: A systematic review. Clin. Otolaryngol. 2010, 35, 6–12. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, R.Z. Finite element modeling of energy absorbance in normal and disordered human ears. Hear. Res. 2013, 301, 146–155. [Google Scholar] [CrossRef]
- Kwacz, M.; Marek, P.; Borkowski, P.; Mrówka, M. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Biomech. Model. Mechanobiol. 2013, 12, 1243–1261. [Google Scholar] [CrossRef]
- Burovikhin, D.; Lauxmann, M. Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery. Int. J. Numer. Methods Biomed. Eng. 2025, 41, e70013. [Google Scholar] [CrossRef]
- Koike, T.; Wada, H.; Kobayashi, T. Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 2002, 111, 1306–1317. [Google Scholar] [CrossRef]
- Elghanaoui, S.; Assif, S.; Faiz, A.; Hajjaji, A. Numerical Modeling of Sound Transmission in the Human Ear Using Finite Element Analysis: Integration of Lumped-Parametric Model. In Proceedings of the International Conference on Advanced Materials for Photonics, Sensing and Energy Conversion Energy Applications, Marrakech, Morocco, 31 October–1 November 2024; Springer: Singapore, 2025; pp. 549–562. [Google Scholar]
- Hong, W.; Horii, Y. Simulation-Based Study on Round Window Atresia by Using a Straight Cochlea Model with Compressible Perilymph. Acoustics 2022, 4, 345–361. [Google Scholar] [CrossRef]
- Yao, W.; Zhao, Z.; Wang, J.; Duan, M. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity. Comput. Biol. Med. 2021, 136, 104756. [Google Scholar] [CrossRef] [PubMed]
- Rosowski, J.J.; Chien, W.; Ravicz, M.E.; Merchant, S.N. Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol. Neurotol. 2007, 12, 265–276. [Google Scholar] [CrossRef]
- Rosowski, J.J.; Nakajima, H.H.; Hamade, M.A.; Mahfoud, L.; Merchant, G.R.; Halpin, C.F.; Merchant, S.N. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults. Ear Hear. 2012, 33, 19–34. [Google Scholar] [CrossRef]
- Mason, M.J. Structure and function of the mammalian middle ear. II: Inferring function from structure. J. Anat. 2016, 228, 300–312. [Google Scholar] [CrossRef]
- Withnell, R.H.; Gowdy, L.E. An analysis of the acoustic input impedance of the ear. J. Assoc. Res. Otolaryngol. JARO 2013, 14, 611–622. [Google Scholar] [CrossRef]
- Lopes, D.; Agujetas, R.; Puga, H.; Teixeira, J.; Lima, R.; Alejo, J.P.; Ferrera, C. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. Int. J. Mech. Sci. 2021, 207, 106650. [Google Scholar] [CrossRef]
- Danesh, A.A.; Shahnaz, N.; Hall, J.W. The audiology of otosclerosis. Otolaryngol. Clin. N. Am. 2018, 51, 327–342. [Google Scholar] [CrossRef]
- Fisch, U. Stapedotomy versus stapedectomy. Otol. Neurotol. 2009, 30, 1166–1167. [Google Scholar] [CrossRef]
- Quaranta, N.; Besozzi, G.; Fallacara, R.A.; Quaranta, A. Air and bone conduction change after stapedotomy and partial stapedectomy for otosclerosis. Otolaryngol. Head Neck Surg. 2005, 133, 116–120. [Google Scholar] [CrossRef]
- Cheng, H.C.; Agrawal, S.K.; Parnes, L.S. Stapedectomy Versus Stapedotomy. Otolaryngol. Clin. N. Am. 2018, 51, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, L.; Gazzini, L.; Laura, E.; De Rossi, S.; Conti, A.; Marchioni, D. Endoscopic stapedotomy: Safety and audiological results in 150 patients. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Malafronte, G.; Trusio, A.; Motta, G.; Filosa, B. Stapedotomy removing only the stapes head and not the entire stapes superstructure: Long-term results. Otol. Neurotol. 2021, 42, e844–e848. [Google Scholar] [CrossRef]
- Sennaroglu, L.; Bajin, M.D.; Cinar, B.C. Stapedotomy. In Inner Ear Malformations: Classification, Evaluation and Treatment; Springer International Publishing: Cham, Switzerland, 2022; pp. 149–160. [Google Scholar]
- Minni, A.; Sementilli, G.; Cialente, F.; Rossetti, V.; Marinelli, A.; Ralli, M.; De Seta, D. Stapedotomy for fenestral otosclerosis: Long term audiovestibular outcomes and complications. Hear. Balance Commun. 2022, 20, 52–57. [Google Scholar] [CrossRef]
- Albera, A.; Parandero, F.; Andriani, R.; Albera, R.; Riva, G.; Canale, A. Prognostic factors influencing postoperative air-bone gap in stapes surgery. Acta Otorhinolaryngol. Ital. 2022, 42, 380. [Google Scholar] [CrossRef]
- Sharaf, K.; Grueninger, I.; Hilpert, A.; Polterauer, D.; Volgger, V.; Manz, K.; Canis, M.; Hempel, J.M.; Müller, J. Stapes and stapes revision surgery: Preoperative air-bone gap is a prognostic marker. Otol. Neurotol. 2021, 42, 985–993. [Google Scholar] [CrossRef]
- Skarzynski, H.; Dziendziel, B.; Gos, E.; Skarzynski, P.H. Audiometric and self-reported outcomes in patients with otosclerosis and a small air-bone gap after stapes surgery. ORL 2023, 85, 88–96. [Google Scholar] [CrossRef]
- Grégoire, A.; Hanot, A.; Gérard, J.M.; de Bie, G.; Rosenzweig, F.; Rademeyer, S.; Bradley, P.; Decat, M. First 100 stapedotomies of a surgeon: Learning curve and functional results. B-ENT 2018, 14, 141–146. [Google Scholar]
- Bailey, H.T., Jr.; Pappas, J.J.; Graham, S.S. Small fenestra stapedectomy technique: Reducing risk and improving hearing. Otolaryngol. Head Neck Surg. 1983, 91, 516–520. [Google Scholar] [CrossRef]
- Moon, C.N., Jr.; Hahn, M.J. Partial vs. total footplate removal in stapedectomy: A comparative study. Laryngoscope 1984, 94, 912–915. [Google Scholar] [CrossRef]
- Dhooge, I.; Desmedt, S.; Maly, T.; Loose, D.; Van Hoecke, H. Long-term hearing results of stapedotomy: Analysis of factors affecting outcome. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Wegner, I.; Eldaebes, M.M.; Landry, T.G.; Grolman, W.; Bance, M.L. The effect of piston diameter in stapedotomy for otosclerosis: A temporal bone model. Otol. Neurotol. 2016, 37, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- McElveen, J.T.; Kutz, J.W. Controversies in the Evaluation and Management of Otosclerosis. Otolaryngol. Clin. N. Am. 2018, 51, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, A.M.T.; Jalali, M.M.; Shoshi, D.V. Predictive factors in 995 stapes surgeries for primary otosclerosis. Laryngoscope 2018, 128, 2403–2407. [Google Scholar] [CrossRef]
- van Rompaey, V.; van de Heyning, P.; Yung, M. Response to: The influence of prosthesis diameter in stapes surgery: A meta-analysis and systematic review of the literature. Otol. Neurotol. 2012, 33, 490–491. [Google Scholar] [CrossRef]
- Grolman, W.; Tange, R.A.; De Bruijn, A.J.G.; Hart, A.A.M.; Schouwenburg, P.F. A retrospective study of the hearing results obtained after stapedotomy by the implantation of two Teflon pistons with a different diameter. Eur. Arch. Otorhino Laryngol. 1997, 254, 422–424. [Google Scholar] [CrossRef]
- Ceddia, M.; Trentadue, B. Evaluation of rotational stability and stress shielding of a stem optimized for hip replacements—A finite element study. Prosthesis 2023, 5, 678–693. [Google Scholar] [CrossRef]
- Ficarella, E.; Minooei, M.; Santoro, L.; Toma, E.; Trentadue, B.; De Spirito, M.; Papi, M.; Pruncu, C.I.; Lamberti, L. Visco-Hyperelastic Characterization of the Equine Immature Zona Pellucida. Materials 2021, 14, 1223. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Giannini, G.; De Giosa, G.; Tucci, M.; Trentadue, B. A Finite Element Analysis Study of Influence of Femoral Stem Material in Stress Shielding in a Model of Uncemented Total Hip Arthroplasty: Ti-6Al-4V versus Carbon Fibre-Reinforced PEEK Composite. J. Compos. Sci. 2024, 8, 254. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Tucci, M.; Lamberti, L.; Trentadue, B. Stress analysis of tibial bone using three different materials for bone fixation plates. J. Compos. Sci. 2024, 8, 334. [Google Scholar] [CrossRef]
Structure | Data Used in the FEM Model |
---|---|
Stapes footplate Density (kg/cm3) Young’s modulus (GPa) Poisson’s ratio | 2.30 17.1 0.3 |
Annular ligament Density (kg/cm3) Young’s modulus (GPa) Poisson’s ratio | 1.20 0.0002 0.3 |
Implant (PTFE) Density (kg/cm3) Young’s modulus (GPa) Poisson’s ratio | 2.2 0.575 0.3 |
Fat Density (kg/cm3) Young’s modulus (GPa) Poisson’s ratio | 1.20 1 × 10−6 0.3 |
Frequency (Hz) | Stapedotomy | Partial Stapedectomy | ||
---|---|---|---|---|
Piston Diameter | Piston Diameter | |||
0.4 mm | 0.6 mm | 0.4 mm | 0.6 mm | |
500 | 2.45 × 10−9 | 2.85 × 10−8 | 2.81 × 10−8 | 1.67 × 10−8 |
1000 | 1.34 × 10−8 | 2.12 × 10−8 | 2.26 × 10−8 | 1.15 × 10−8 |
2000 | 2.23 × 10−8 | 2.45 × 10−8 | 2.48 × 10−8 | 1.21 × 10−8 |
4000 | 1.26 × 10−8 | 1.75 × 10−8 | 1.92 × 10−8 | 1.13 × 10−8 |
Piston displacement (m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceddia, M.; Quaranta, N.; Pontillo, V.; Murri, A.; Pantaleo, A.; Trentadue, B. Effect of Middle Ear Prosthesis Diameter in Platinotomy and Partial Platinectomy on Hearing Gain: A Finite Element Study. Materials 2025, 18, 3002. https://doi.org/10.3390/ma18133002
Ceddia M, Quaranta N, Pontillo V, Murri A, Pantaleo A, Trentadue B. Effect of Middle Ear Prosthesis Diameter in Platinotomy and Partial Platinectomy on Hearing Gain: A Finite Element Study. Materials. 2025; 18(13):3002. https://doi.org/10.3390/ma18133002
Chicago/Turabian StyleCeddia, Mario, Nicola Quaranta, Vito Pontillo, Alessandra Murri, Alessandra Pantaleo, and Bartolomeo Trentadue. 2025. "Effect of Middle Ear Prosthesis Diameter in Platinotomy and Partial Platinectomy on Hearing Gain: A Finite Element Study" Materials 18, no. 13: 3002. https://doi.org/10.3390/ma18133002
APA StyleCeddia, M., Quaranta, N., Pontillo, V., Murri, A., Pantaleo, A., & Trentadue, B. (2025). Effect of Middle Ear Prosthesis Diameter in Platinotomy and Partial Platinectomy on Hearing Gain: A Finite Element Study. Materials, 18(13), 3002. https://doi.org/10.3390/ma18133002