Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities
Abstract
1. Introduction
2. Alloying Strategies
3. Fabrication and Processing
4. High-Temperature Properties
4.1. Oxidation and Corrosion Resistance
4.2. Mechanical Properties
5. Applications
6. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stringer, J.; Wright, I.G. Current Limitations of High-Temperature Alloys in Practical Applications. Oxid. Met. 1995, 44, 265–308. [Google Scholar] [CrossRef]
- Hart, G.L.W.; Mueller, T.; Toher, C.; Curtarolo, S. Machine Learning for Alloys. Nat. Rev. Mater. 2021, 6, 730–755. [Google Scholar] [CrossRef]
- Sharma, P.; Tucker, W.C.; Balasubramanian, G. Optimal Interplay of Charge Localization, Lattice Dynamics and Slip Systems Drives Structural Softening in Dilute W Alloys with Re Additives. Int. J. Refract. Met. Hard Mater. 2025, 128, 107086. [Google Scholar] [CrossRef]
- Meetham, G.W. High-Temperature Materials—A General Review. J. Mater. Sci. 1991, 26, 853–860. [Google Scholar] [CrossRef]
- Eswarappa Prameela, S.; Pollock, T.M.; Raabe, D.; Meyers, M.A.; Aitkaliyeva, A.; Chintersingh, K.-L.; Cordero, Z.C.; Graham-Brady, L. Materials for Extreme Environments. Nat. Rev. Mater. 2022, 8, 81–88. [Google Scholar] [CrossRef]
- Deevi, S.C. Advanced Intermetallic Iron Aluminide Coatings for High Temperature Applications. Prog. Mater. Sci. 2021, 118, 100769. [Google Scholar] [CrossRef]
- Yu, J.; Lai, H.; Shi, R.; Peng, Y.; Miao, L. Review of SiGe Alloys: Latest Research Progress and Optimization Strategies for Thermoelectric Properties. Adv. Ceram. 2023, 44, 397–413. [Google Scholar] [CrossRef]
- Zhang, W.T.; Wang, X.Q.; Zhang, F.Q.; Cui, X.Y.; Fan, B.B.; Guo, J.M.; Guo, Z.M.; Huang, R.; Huang, W.; Li, X.B.; et al. Frontiers in High Entropy Alloys and High Entropy Functional Materials. Rare Met. 2024, 43, 4639–4776. [Google Scholar] [CrossRef]
- Qiu, H.-P.; Guan, X.-Y.; Zhao, Y.-L.; Yan, J.; Chen, Y.; Zhang, Q.-Y.; Zhang, B.-Y.; Chen, M.-W. Influence of Matrix Modification on the Oxidation Resistance of SiC/SiC Composites. Adv. Ceram. 2023, 44, 183–192. [Google Scholar]
- Zhao, Z.; Liao, W.; Chen, J.; Jiao, J.; Wu, C.; Gou, Y. Advanced Research on the Preparation and Application of Carbide Ceramic Fibers. J. Adv. Ceram. 2024, 13, 1291–1336. [Google Scholar] [CrossRef]
- Xia, J.; Noguchi, Y.; Xu, X.; Odaira, T.; Kimura, Y.; Nagasako, M.; Omori, T.; Kainuma, R. Iron-Based Superelastic Alloys with near-Constant Critical Stress Temperature Dependence. Science 2020, 369, 855–858. [Google Scholar] [CrossRef]
- Sun, X.; Song, W.; Liang, J.; Li, J.; Zhou, Y. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing. Jinshu Xuebao/Acta Metall. Sin. 2021, 57, 1471–1483. [Google Scholar] [CrossRef]
- Darolia, R. Development of Strong, Oxidation and Corrosion Resistant Nickel-Based Superalloys: Critical Review of Challenges, Progress and Prospects. Int. Mater. Rev. 2019, 64, 355–380. [Google Scholar] [CrossRef]
- Sato, J.; Omori, T.; Oikawa, K.; Ohnuma, I.; Kainuma, R.; Ishida, K. Cobalt-Base High-Temperature Alloys. Science 2006, 312, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Su, J.L.; Jiang, F.L.; Teng, J.; Chen, L.Q.; Requena, G.; Yan, M.; Zhang, L.C.; Wang, Y.M.; Okulov, I.V.; Zhu, H.M.; et al. Laser Additive Manufacturing of Titanium Alloys: Process, Materials and Post-Processing. Rare Met. 2024, 43, 6288–6328. [Google Scholar] [CrossRef]
- Kollová, A.; Pauerová, K. Superalloys—Characterization, Usage and Recycling. Manuf. Technol. 2022, 22, 550–557. [Google Scholar] [CrossRef]
- Akande, I.G.; Oluwole, O.O.; Fayomi, O.S.I.; Odunlami, O.A. Overview of Mechanical, Microstructural, Oxidation Properties and High-Temperature Applications of Superalloys. Mater. Today Proc. 2020, 43, 2222–2231. [Google Scholar] [CrossRef]
- Sinha, M.K.; Pal, A.; Kishore, K.; Singh, A.; Archana; Sansanwal, H.; Sharma, P. Applications of Sustainable Techniques in Machinability Improvement of Superalloys: A Comprehensive Review. Int. J. Interact. Des. Manuf. 2023, 17, 473–498. [Google Scholar] [CrossRef]
- Pollock, T.M. Alloy Design for Aircraft Engines. Nat. Mater. 2016, 15, 809–815. [Google Scholar] [CrossRef]
- Xue, Y.; Zhu, D.; Pan, J.; You, Z.; Lyu, X. Preparing Fe-Cr-Ni Alloy by Utilization of Limonitic Nickel Laterite Sinter. J. Cent. South Univ. 2024, 31, 1494–1506. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Dong, K.; Zhang, Z. Research Progress of Fe-Based Superelastic Alloys. Crystals 2022, 12, 602. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, Z.; Liu, L.; Wang, B.; Cui, Y.; Baker, I.; Cheng, J. Development of Fe-Ni-Co-Al-Based Superelastic Alloys. Crit. Rev. Solid State Mater. Sci. 2024, 49, 308–333. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, D.; Feng, P.; Guo, S.; Yang, J.; Li, Y. Corrosion of FeCrAl Alloys Used as Fuel Cladding in Nuclear Reactors. J. Alloys Compd. 2021, 869, 159235. [Google Scholar] [CrossRef]
- Pauletto, G.; Vaccari, A.; Groppi, G.; Bricaud, L.; Benito, P.; Boffito, D.C.; Lercher, J.A.; Patience, G.S. FeCrAl as a Catalyst Support. Chem. Rev. 2020, 120, 7516–7550. [Google Scholar] [CrossRef] [PubMed]
- Gorejová, R.; Haverová, L.; Oriňaková, R.; Oriňak, A.; Oriňak, M. Recent Advancements in Fe-Based Biodegradable Materials for Bone Repair. J. Mater. Sci. 2019, 54, 1913–1947. [Google Scholar] [CrossRef]
- Qi, X.; You, J.; Zhou, J.; Qiu, K.; Cui, X.; Tian, J.; Li, B. A Review of Fe-Based Amorphous and Nanocrystalline Alloys: Preparations, Applications, and Effects of Alloying Elements. Phys. Status Solidi (A) Appl. Mater. Sci. 2023, 220, 2300079. [Google Scholar] [CrossRef]
- Zhou, H.; Li, L.; Zhao, Y.; Shen, M.; Zhao, H.; Xiao, Y.; Liu, S. Review of Rare Earth Oxide Doping-Modified Laser Cladding of Fe-Based Alloy Coatings. China Foundry 2025, 22, 12–22. [Google Scholar] [CrossRef]
- Del Olmo, R.; Tynkevych, O.; Łazińska, M.; Syrek, K.; Durejko, T.; Czerwiński, M.; Zaraska, L.; Tiwari, R.; Michalska-Domańska, M. Anodizing of Iron-Based Alloys: Fundamentals, Recent Progress, and Applications. Rep. Prog. Phys. 2025, 88, 026501. [Google Scholar] [CrossRef]
- Cui, J.; Sun, Y.; Shi, K.; Deng, S.; Ma, T.; Du, Y.; Zhang, J.; Cheng, N.; Yuan, X.; He, L.; et al. Invar Effect in the Wide and Higher Temperature Range by Coherent Coupling in Fe-Based Alloy. Adv. Funct. Mater. 2024, 34, 2309431. [Google Scholar] [CrossRef]
- Vukelic, G.; Mihaljec, B.; Ivošević, Š. Marine Environment Effect on Welded Additively Manufactured Stainless Steel AISI 316L. J. Mar. Sci. Eng. 2025, 13, 459. [Google Scholar] [CrossRef]
- Ding, P.; Gong, X.; Sun, L.; Niu, J.; Zhang, Y.; Xu, L. A Study on Crack Initiation and Propagation of Welded Joints under Explosive Load. J. Mar. Sci. Eng. 2024, 12, 927. [Google Scholar] [CrossRef]
- Kishore, K.; Sarkar, K.; Arora, K.S. Effect of Alloying Elements on Microstructure, Wear, and Corrosion Behavior of Fe-Based Hardfacing. Weld. World 2023, 67, 2463–2475. [Google Scholar] [CrossRef]
- Zhao, L.; Zhai, G.; Wu, J.; Chen, X.; Zhai, Q. Microstructure and Mechanical Properties of a Novel Nb–V–Ce Multi-Microalloyed Low-Alloy Cast Steel. J. Iron Steel Res. Int. 2025. [Google Scholar] [CrossRef]
- Xie, A.; Chen, S.; Wu, Y.; Jiang, H.; Rong, L. Homogenization Temperature Dependent Microstructural Evolution and Mechanical Properties in a Nb-Stabilized Cast Austenitic Stainless Steel. Mater. Charact. 2022, 194, 112384. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Li, J.; Gou, J.; Ding, Z. The Influence of Solute Elements on Grain Size, Hardness and Irradiation-Induced Defect Clusters in Dilute Fe-Based Alloys. J. Nucl. Mater. 2024, 588, 154818. [Google Scholar] [CrossRef]
- Qi, Y.; Ma, X.; Jiang, Z.; Ma, L.; Wang, Z.; Zhou, C.; Hasan, M.; Dobrzański, L.A.; Zhao, J. Numerical and Experimental Investigation on the Formability of Stainless Steel-Copper Composites during Micro Deep Drawing. J. Cent. South Univ. 2025, 32, 1237–1251. [Google Scholar] [CrossRef]
- Toozandehjani, M.; Moozarm Nia, P.; Abouzari Lotf, E.; Ostovan, F.; Shamshirsaz, M. Aluminum Composite Powder as an Additive in Epoxy Coatings for Enhancement of Corrosion Protection of Carbon Steel. J. Cent. South Univ. 2024, 31, 723–736. [Google Scholar] [CrossRef]
- Li, X.; Zhu, G.; Ma, W.; Shao, R.; Zhang, Y.; Zheng, X. Crack Generation, Propagation Mechanism and Thermal Property of Zn-Coated Hot Stamping Steel. J. Cent. South Univ. 2024, 31, 399–415. [Google Scholar] [CrossRef]
- Yao, K.; Dong, Y.; Jiang, Z.; Wang, Y.; Sun, J. Effect of Cerium Addition on Cleanliness and Magnetic Properties of Fe-80Ni Permalloy. J. Cent. South Univ. 2023, 30, 3260–3275. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Li, P.-T.; Zhang, N.; Shang, H.-S. A ZnFeNiCoCr High-Entropy Alloy for Efficient Bifunctional Oxygen Electrocatalysis. Rare Met. 2025, 44, 1789–1799. [Google Scholar] [CrossRef]
- Zhan, Y.; Cui, Y.; Wang, J.; Yu, Z. Nano-Silica Modified Stainless Steel Mesh for Oil-Water Separation. Fine Chem. 2024, 41, 1933–1940. [Google Scholar] [CrossRef]
- Chen, R.Y.; Yuen, W.Y.D. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxid. Met. 2003, 59, 433–468. [Google Scholar] [CrossRef]
- Inoue, A. Bulk Amorphous and Nanocrystalline Alloys with High Functional Properties. Mater. Sci. Eng. A 2001, 304–306, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Zang, B.; Xiang, M.; Shen, F.; Song, L.; Gao, M.; Zhang, Y.; Huo, J.; Wang, J. Designing Fe-Based Amorphous Alloys With Both Ultra-High Magnetization and Ultra-Low Coercivity Through Artificial Intelligence. Adv. Funct. Mater. 2025, 2425588. [Google Scholar] [CrossRef]
- Jia, Z.; Kang, J.; Zhang, W.C.; Wang, W.M.; Yang, C.; Sun, H.; Habibi, D.; Zhang, L.C. Surface Aging Behaviour of Fe-Based Amorphous Alloys as Catalysts during Heterogeneous Photo Fenton-like Process for Water Treatment. Appl. Catal. B Environ. 2017, 204, 537–547. [Google Scholar] [CrossRef]
- Ani, M.H.B.; Kodama, T.; Ueda, M.; Kawamura, K.; Maruyama, T. The Effect of Water Vapor on High Temperature Oxidation of Fe-Cr Alloys at 1073 K. Mater. Trans. 2009, 50, 2656–2663. [Google Scholar] [CrossRef]
- Li, Y.S.; Niu, Y.; Spiegel, M. High Temperature Interaction of Al/Si-Modified Fe-Cr Alloys with KCl. Corros. Sci. 2007, 49, 1799–1815. [Google Scholar] [CrossRef]
- Biswas, S.; Ramachandra, S.; Hans, P.; Kumar, S.P.S. Materials for Gas Turbine Engines: Present Status, Future Trends and Indigenous Efforts. J. Indian Inst. Sci. 2022, 102, 297–309. [Google Scholar] [CrossRef]
- Airiskallio, E.; Nurmi, E.; Heinonen, M.H.; Väyrynen, I.J.; Kokko, K.; Ropo, M.; Punkkinen, M.P.J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; et al. High Temperature Oxidation of Fe-Al and Fe-Cr-Al Alloys: The Role of Cr as a Chemically Active Element. Corros. Sci. 2010, 52, 3394–3404. [Google Scholar] [CrossRef]
- Felten, E.J. High-Temperature Oxidation of Fe-Cr Base Alloys with Particular Reference to Fe-Cr-Y Alloys. J. Electrochem. Soc. 1961, 108, 490. [Google Scholar] [CrossRef]
- Tedmon, C.S. The High-Temperature Oxidation of Fe-Cr Alloys in the Composition Range of 25–95% Cr. J. Electrochem. Soc. 1967, 114, 788. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, P.; Qi, W.; Du, S.; Liu, Z.; Meng, F.; Zhang, X.; Wang, K.; Li, Q.; Yao, Z.; et al. Mechanism of Al on FeCrAl Steam Oxidation Behavior and Molecular Dynamics Simulations. J. Alloys Compd. 2020, 828, 154310. [Google Scholar] [CrossRef]
- Babu, N.; Balasubramaniam, R.; Ghosh, A. High-Temperature Oxidation of Fe3Al-Based Iron Aluminides in Oxygen. Corros. Sci. 2001, 43, 2239–2254. [Google Scholar] [CrossRef]
- Morris, D.G.; Muñoz-Morris, M.A.; Baudin, C. The High-Temperature Strength of Some Fe3Al Alloys. Acta Mater. 2004, 52, 2827–2836. [Google Scholar] [CrossRef]
- Tortorelli, P.F.; Natesan, K. Critical Factors Affecting the High-Temperature Corrosion Performance of Iron Aluminides. Mater. Sci. Eng. A 1998, 258, 115–125. [Google Scholar] [CrossRef]
- Fischer, R.A.; Campbell, A.J.; Caracas, R.; Reaman, D.M.; Heinz, D.L.; Dera, P.; Prakapenka, V.B. Equations of State in the Fe-FeSi System at High Pressures and Temperatures. AGU J. Geophys. Res. Solid Earth 2014, 119, 2810–2827. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, K.; Hou, M.; Driscoll, P.; Salke, N.P.; Greenberg, E.; Hemley, R.J.; Cohen, R.E.; Lin, J. Thermal Conductivity of Fe-Si Alloys and Thermal Stratification in Earth’s Core. Proc. Natl. Acad. Sci. USA 2022, 119, e2119001119. [Google Scholar] [CrossRef]
- Li, W.; Lian, J.; Wang, D.; Zhang, S.; Han, C.; Du, Z.; Li, F. Effect of Si Addition on Structure and Corrosion Resistance of FeCoNiCr High-Entropy Alloy Coating. Materials 2024, 18, 72. [Google Scholar] [CrossRef]
- Mao, W.L.; Campbell, A.J.; Heinz, D.L.; Shen, G. Phase Relations of Fe-Ni Alloys at High Pressure and Temperature. Phys. Earth Planet. Inter. 2006, 155, 146–151. [Google Scholar] [CrossRef]
- Liu, N.; Cao, X.; Zhao, T.; Zhang, Z.W. Progress of Zirconium Alloying in Iron-Based Alloys and Steels. Mater. Sci. Technol. 2021, 37, 830–851. [Google Scholar] [CrossRef]
- Qi, W.; Yang, K.; Wang, P.; Du, S.; Bai, C.; Wang, X.; Qiao, Y.; Zheng, T.; Zhang, L.L.; Zhang, X. High-Temperature Steam Oxidation Behavior of an FeCrAl Alloy with Controlled Addition of Mo. J. Mater. Sci. 2022, 57, 20909–20927. [Google Scholar] [CrossRef]
- Dong, X.; Saksena, A.; Tehranchi, A.; Gault, B.; Ponge, D.; Sun, B.; Raabe, D. Interfacial Boron Segregation in a High-Mn and High-Al Multiphase Lightweight Steel. Acta Mater. 2025, 283, 120568. [Google Scholar] [CrossRef]
- Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W. Synergistic Alloying Effect on Microstructural Evolution and Mechanical Properties of Cu Precipitation-Strengthened Ferritic Alloys. Acta Mater. 2013, 61, 7726–7740. [Google Scholar] [CrossRef]
- Albrecht, A.; Song, S.Y.; Yoo, S.; Lee, C.; Krämer, M.; Hans, M.; Gault, B.; Ma, Y.; Raabe, D.; Sohn, S.S.; et al. An Atomic-Scale View at γ’-Fe4N as Hydrogen Barrier Material. Adv. Mater. Interfaces 2025, 2500207. [Google Scholar] [CrossRef]
- Steiner, T.; Mittemeijer, E.J. Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review. J. Mater. Eng. Perform. 2016, 25, 2091–2102. [Google Scholar] [CrossRef]
- Du, J.L.; Feng, Y.L.; Zhang, M. Construction of a Machine-Learning-Based Prediction Model for Mechanical Properties of Ultra-Fine-Grained Fe–C Alloy. J. Mater. Res. Technol. 2021, 15, 4914–4930. [Google Scholar] [CrossRef]
- Shao, L. Effect of Carbon on Void Nucleation in Iron. Materials 2024, 17, 3375. [Google Scholar] [CrossRef]
- Risal, S.; Singh, N.; Yao, Y.; Sun, L.; Risal, S.; Zhu, W. Accelerating Elastic Property Prediction in Fe-C Alloys through Coupling of Molecular Dynamics and Machine Learning. Materials 2024, 17, 601. [Google Scholar] [CrossRef]
- Akca, E.; Gürsel, A. A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy. PEN 2015, 3, 15–27. [Google Scholar] [CrossRef]
- Fang, W.; Huang, J.; Peng, T.; Long, Y.; Yin, F. Machine Learning-Based Performance Predictions for Steels Considering Manufacturing Process Parameters: A Review. J. Iron Steel Res. Int. 2024, 31, 1555–1581. [Google Scholar] [CrossRef]
- Cemernek, D.; Cemernek, S.; Gursch, H.; Pandeshwar, A.; Leitner, T.; Berger, M.; Klösch, G.; Kern, R. Machine Learning in Continuous Casting of Steel: A State-of-the-Art Survey. J. Intell. Manuf. 2022, 33, 1561–1579. [Google Scholar] [CrossRef]
- Pan, G.; Wang, F.; Shang, C.; Wu, H.; Wu, G.; Gao, J.; Wang, S.; Gao, Z.; Zhou, X.; Mao, X. Advances in Machine Learning- and Artificial Intelligence-Assisted Material Design of Steels. Int. J. Miner. Metall. Mater. 2023, 30, 1003–1024. [Google Scholar] [CrossRef]
- Guo, S.; Yu, J.; Liu, X.; Wang, C.; Jiang, Q. A Predicting Model for Properties of Steel Using the Industrial Big Data Based on Machine Learning. Comput. Mater. Sci. 2019, 160, 95–104. [Google Scholar] [CrossRef]
- Shen, C.; Wang, C.; Wei, X.; Li, Y.; Van Der Zwaag, S.; Xu, W. Physical Metallurgy-Guided Machine Learning and Artificial Intelligent Design of Ultrahigh-Strength Stainless Steel. Acta Mater. 2019, 179, 201–214. [Google Scholar] [CrossRef]
- Winkelmann, H.; Badisch, E.; Kirchgaßner, M.; Danninger, H. Wear Mechanisms at High Temperatures. Part 1: Wear Mechanisms of Different Fe-Based aAlloys at Elevated Temperatures. Tribol. Lett. 2009, 34, 155–166. [Google Scholar] [CrossRef]
- Torres, H.; Varga, M.; Ripoll, M.R. High Temperature Hardness of Steels and Iron-Based Alloys. Mater. Sci. Eng. A 2016, 671, 170–181. [Google Scholar] [CrossRef]
- Qi, W.; Qiao, Y.; Ru, W.; Wang, X.; Zhang, X.; Zheng, T.; Du, S.; Wang, P.; Yang, K. High-Temperature Steam Oxidation and Surface Microstructure Evolution of Fe13Cr6Al(1–4)Mo0.15Y Alloys. Metals 2024, 14, 1229. [Google Scholar] [CrossRef]
- Xu, K.D.; Ren, Z.M.; Li, C.J. Progress in Application of Rare Metals in Superalloys. Rare Met. 2014, 33, 111–126. [Google Scholar] [CrossRef]
- Lee, H.; Son, H.; Choi-Yim, H. Effect of Nb Addition and Annealing Treatment on Structural and Magnetic Properties of Fe–Si–B–P–Cu Alloy Ribbons. Intermetallics 2024, 166, 108200. [Google Scholar] [CrossRef]
- Ni, Y.; Qi, W.; Zhao, L.; Li, D.; Qiao, Y.; Zhou, J.; Wang, P.; Yang, K. Thermo-Mechanical Properties and Oxidation Behavior of FeCrAl Alloys with Si and Y Addition. Metals 2025, 15, 433. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, J.; Zhao, L.; Li, D.; Qiao, Y.; Yang, K.; Wang, X.; Bai, C.; Wang, P.; Li, X. A First-Principle Study of the Effect of Yttrium on the Oxidation Resistance of FeCrAl Alloys. Mater. Technol. 2025, 40, 2502957. [Google Scholar] [CrossRef]
- Sohail, Y.; Zhang, C.; Gao, S.; Zhang, J.; Song, W.; Li, X.; Wang, B.; Li, S.; Xue, D.; Liu, G.; et al. A Complex Concentrated Alloy with Record-High Strength-Toughness at 77 K. Adv. Mater. 2024, 37, 2410923. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Yang, D.; Su, C.; Li, J.; Cao, K.; Xie, W.; Yan, F.; Yan, C.; Qin, S. Effect of Multi-Element Synergistic Addition on the Microstructure Evolution and Performance Enhancement of Laser Hot-Wire Cladded Fe-Based Alloy. Int. J. Press. Vessel. Pip. 2024, 212, 105321. [Google Scholar] [CrossRef]
- Persdotter, A.; Boll, T.; Ssenteza, V.; Jonsson, T. Insight into the Influence of Alloying Elements on the Secondary Corrosion Protection of Fe-Base Alloys by Means of Atom Probe Tomography. Corros. Sci. 2024, 235, 112175. [Google Scholar] [CrossRef]
- Terrani, K.A. Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Wei, L.L.; Wang, Y.G.; Misra, R.D.K.; Chen, J. Understanding the High-Temperature Oxidation Resistance of Heat-Resistant Austenitic Stainless Steel with Gradient Nanostructure. Corros. Sci. 2024, 231, 111966. [Google Scholar] [CrossRef]
- Wang, P.; Qi, W.; Yang, K.; Qiao, Y.; Wang, X.; Zheng, T.; Bai, C.; Liu, Z.; Zhang, X. Systematic Investigation of the Oxidation Behavior of Fe-Cr-Al Cladding Alloys in High-Temperature Steam. Corros. Sci. 2022, 207, 110595. [Google Scholar] [CrossRef]
- Badini, C.; Laurella, F. Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism. Surf. Coat. Technol. 2001, 135, 291–298. [Google Scholar] [CrossRef]
- Gussev, M.N.; Field, K.G.; Yamamoto, Y. Design, Properties, and Weldability of Advanced Oxidation-Resistant FeCrAl Alloys. Mater. Des. 2017, 129, 227–238. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Pint, B.A.; Terrani, K.A.; Field, K.G.; Yang, Y.; Snead, L.L. Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors. J. Nucl. Mater. 2015, 467, 703–716. [Google Scholar] [CrossRef]
- Qian, L.; Liu, Y.; Huang, T.; Chen, W.; Du, S.; Yin, C.; Xiong, Q. Research Progress in High-Temperature Thermo-Mechanical Behavior for Modelling FeCrAl Cladding under Loss-of-Coolant Accident Condition. Prog. Nucl. Energy 2023, 164, 104848. [Google Scholar] [CrossRef]
- Palaniappan, S.; Joshi, S.S.; Sharma, S.; Radhakrishnan, M.; Krishna, K.V.M.; Dahotre, N.B. Additive Manufacturing of FeCrAl Alloys for Nuclear Applications—A Focused Review. Nucl. Mater. Energy 2024, 40, 101702. [Google Scholar] [CrossRef]
- Magalhães, I.R.; Chaves, L.V.G.; de Castro, V.F.; Reis, P.A.L.; Costa, A.L.; Veloso, M.A.F.; Pereira, C. Comparative Analysis of Different FeCrAl Alloys in Pressurized Water Reactors. Nucl. Eng. Des. 2024, 422, 113109. [Google Scholar] [CrossRef]
- Lindmark, H.; Phother, J.; Dolores Paz Olausson, M.; Nockert, J.; Lind, F.; Jonasson, A.; Barišić, V.; Vänskä, K.; Rioja-Monllor, L.; Liske, J. A Material Degradation Study of Novel FeCrAl Alloys, Stainless Steels and Nickel Base Alloy in Fluidized Bed Heat Exchangers of a Waste-Fired CFB Boiler. Fuel 2023, 338, 127299. [Google Scholar] [CrossRef]
- Niu, M.C.; Yin, L.C.; Yang, K.; Luan, J.H.; Wang, W.; Jiao, Z.B. Synergistic Alloying Effects on Nanoscale Precipitation and Mechanical Properties of Ultrahigh-Strength Steels Strengthened by Ni3Ti, Mo-Enriched, and Cr-Rich Co-Precipitates. Acta Mater. 2021, 209, 116788. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, S.; Zhang, H.; Huang, Y.; Guan, D.; Xu, Y.; Guan, S.; Bendersky, L.A.; Davydov, A.V.; Wu, Y.; et al. Facile Route to Bulk Ultrafine-Grain Steels for High Strength and Ductility. Nature 2021, 590, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; An, J.; Zhang, L.; Bai, C.; Tu, J.; Luo, J. Composition Optimization of Cobalt-Free Fe-Cr-Ni-Al/Ti Multi-Principal Element Alloys for Strength-Ductility Trade-off Based on Machine Learning. Mater. Today Commun. 2023, 36, 106498. [Google Scholar] [CrossRef]
- Baik, S., II; Wang, S.Y.; Liaw, P.K.; Dunand, D.C. Increasing the Creep Resistance of Fe-Ni-Al-Cr Superalloys via Ti Additions by Optimizing the B2/L21 Ratio in Composite Nano-Precipitates. Acta Mater. 2018, 157, 142–154. [Google Scholar] [CrossRef]
- Cho, K.; Ikeda, K.; Yasuda, H.Y. Improvement of Room and High Temperature Tensile Properties of NiAl-Strengthened Ferritic Heat-Resistant Steels through Mo Addition. Mater. Sci. Eng. A 2018, 728, 239–250. [Google Scholar] [CrossRef]
- Sundar, R.S.; Deevi, S.C. High-Temperature Strength and Creep Resistance of FeAl. Mater. Sci. Eng. A 2003, 357, 124–133. [Google Scholar] [CrossRef]
- Show, B.K.; Veerababu, R.; Balamuralikrishnan, R.; Malakondaiah, G. Effect of Vanadium and Titanium Modification on the Microstructure and Mechanical Properties of a Microalloyed HSLA Steel. Mater. Sci. Eng. A 2010, 527, 1595–1604. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong Steel via Minimal Lattice Misfit and High-Density Nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Hong, S.J.; Lee, J.K.; Song, S.H.; Hong, S.H.; Kim, K.B.; Liaw, P.K. Optimization of B2/L21 Hierarchical Precipitate Structure to Improve Creep Resistance of a Ferritic Fe-Ni-Al-Cr-Ti Superalloy via Thermal Treatments. Scr. Mater. 2019, 161, 18–22. [Google Scholar] [CrossRef]
- Park, K.; Cho, B.; Hong, S.J.; Lim, K.R.; Lee, C.; Song, G. Outstanding High-Temperature Strength of Novel Fe–Cr–Ni–Al–V Ferritic Alloys with Hierarchical B2–NiAl Precipitates. Mater. Sci. Eng. A 2022, 840, 142999. [Google Scholar] [CrossRef]
- Qian, F.; Sharp, J.; Rainforth, W.M. Characterisation of L21-Ordered Ni2TiAl Precipitates in [Formula Presented] Maraging Steels. Mater. Charact. 2016, 118, 199–205. [Google Scholar] [CrossRef]
- Song, G.; Sun, Z.; Clausen, B.; Liaw, P.K. Microstructural Characteristics of a Ni2TiAl-Precipitate-Strengthened Ferritic Alloy. J. Alloys Compd. 2017, 693, 921–928. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, M.; Zhang, Y.; Li, J.; Liu, L.; Han, J.; Li, X.; Zhang, Z. A Novel Immiscible High Entropy Alloy Strengthened via L12-Nanoprecipitate. J. Cent. South Univ. 2024, 31, 1808–1822. [Google Scholar] [CrossRef]
- Yasuda, H.Y.; Odawara, Y.; Soma, K.; Yoshimoto, T.; Cho, K. Effects of CoAl Precipitates on Deformation Behavior of Fe-Al-Co Single Crystals. Intermetallics 2017, 91, 140–149. [Google Scholar] [CrossRef]
- Chen, N.; Chen, L.W.; Teng, H.; Li, Z.Y.; Yuan, T.C. A Modified M2 High-Speed Steel Enhanced by in-Situ Synthesized Core-Shell MC Carbides. J. Cent. South Univ. 2024, 31, 84–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.T.; Miller, M.K.; Wang, X.L.; Wen, Y.; Fujita, T.; Hirata, A.; Chen, M.; Chen, G.; Chin, B.A. A Nanoscale Co-Precipitation Approach for Property Enhancement of Fe-Base Alloys. Sci. Rep. 2013, 3, 1327. [Google Scholar] [CrossRef]
- Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T. Group Precipitation and Age Hardening of Nanostructured Fe-Based Alloys with Ultra-High Strengths. Sci. Rep. 2016, 6, 21364. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.K.; Zhang, F.; Miller, M.K.; Liu, C.T.; Huang, S.; Chou, Y.T.; Tien, R.H.; Chang, Y.A.; Liaw, P.K. New NiAl-Strengthened Ferritic Steels with Balanced Creep Resistance and Ductility Designed by Coupling Thermodynamic Calculations with Focused Experiments. Intermetallics 2012, 29, 110–115. [Google Scholar] [CrossRef]
- Jain, R.; Jain, S.; Nagarjuna, C.; Samal, S.; Rananavare, A.P.; Dewangan, S.K.; Ahn, B. A Comprehensive Review on Hot Deformation Behavior of High-Entropy Alloys for High Temperature Applications. Met. Mater. Int. 2025. [Google Scholar] [CrossRef]
- Dewangan, S.K.; Mangish, A.; Kumar, S.; Sharma, A.; Ahn, B.; Kumar, V. A Review on High-Temperature Applicability: A Milestone for High Entropy Alloys. Eng. Sci. Technol. Int. J. 2022, 35, 101211. [Google Scholar] [CrossRef]
- Liang, J.; Cao, G.; Zeng, M.; Fu, L. Controllable Synthesis of High-Entropy Alloys. Chem. Soc. Rev. 2024, 53, 6021–6041. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Tsai, C.-W.; Yeh, A.-C.; Yeh, J.-W. Clarifying the Four Core Effects of High-Entropy Materials. Nat. Rev. Chem. 2024, 8, 471–485. [Google Scholar] [CrossRef] [PubMed]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Praveen, S.; Kim, H.S. High-Entropy Alloys: Potential Candidates for High-Temperature Applications—An Overview. Adv. Eng. Mater. 2018, 20, 1700645. [Google Scholar] [CrossRef]
- Rao, Z.; Tung, P.; Xie, R.; Wei, Y.; Zhang, H.; Ferrari, A.; Klaver, T.P.C.; Körmann, F.; Sukumar, P.T.; da Silva, A.K.; et al. Machine Learning-Enabled High-Entropy Alloy Discovery. Science 2022, 378, 78–85. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Wang, W.; Liu, B.; Lv, Y.; Yang, W.; Xu, D.; Liu, Y. A Review on Fundamental of High Entropy Alloys with Promising High–Temperature Properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Kim, L.; Scougale, W.R.; Sharma, P.; Shirato, N.; Wieghold, S.; Rose, V.; Chen, W.; Balasubramanian, G.; Chien, T. Distinguishing Elements at the Sub-Nanometer Scale on the Surface of a High Entropy Alloy. Adv. Mater. 2024, 36, 2402442. [Google Scholar] [CrossRef] [PubMed]
- Miracle, D.B.; Senkov, O.N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, S.; Jin, Y.; Xu, L.; Xu, X.; Yin, C.; Jia, Y. High-Temperature Oxidation Behaviours of AlCoCrFeNi High-Entropy Alloy at 1073–1273 K. Oxid. Met. 2020, 94, 265–281. [Google Scholar] [CrossRef]
- Tokarewicz, M.; Grądzka-Dahlke, M. Review of Recent Research on Alcocrfeni High-Entropy Alloy. Metals 2021, 11, 1302. [Google Scholar] [CrossRef]
- Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. Heat Treatment Impacts the Micro-Structure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy. J. Alloys Compd. 2016, 683, 221–230. [Google Scholar] [CrossRef]
- Tsao, T.; Chang, Y.; Chang, K.; Yeh, J.; Chiou, M.; Jian, S.; Kuo, C.; Wang, W.; Murakami, H. Developing New Type of High Temperature Alloys–High Entropy Superalloys. Int. J. Metall. Mater. Eng. 2015, 1, 1–4. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Zhang, E.; Wei, R.; Wang, L.; Chen, J.; Yuan, S.; Han, Z.; Chen, C.; Li, F. Strengthening of Ferrous Medium Entropy Alloys by Promoting Phase Transformation. Intermetallics 2021, 136, 107265. [Google Scholar] [CrossRef]
- Seol, J.B.; Bae, J.W.; Li, Z.; Chan Han, J.; Kim, J.G.; Raabe, D.; Kim, H.S. Boron Doped Ultrastrong and Ductile High-Entropy Alloys. Acta Mater. 2018, 151, 366–376. [Google Scholar] [CrossRef]
- Wei, R.; Zhang, K.; Chen, L.; Han, Z.; Wang, T.; Chen, C.; Jiang, J.; Hu, T.; Li, F. Novel Co-Free High Performance TRIP and TWIP Medium-Entropy Alloys at Cryogenic Temperatures. J. Mater. Sci. Technol. 2020, 57, 153–158. [Google Scholar] [CrossRef]
- Wang, Z.; Genc, A.; Baker, I. Direct versus Indirect Particle Strengthening in a Strong, Ductile FeNiMnAlTi High Entropy Alloy. Mater. Charact. 2017, 132, 156–161. [Google Scholar] [CrossRef]
- Qin, M.; Jin, X.; Zhang, M.; Yang, H.; Qiao, J. Twinning Induced Remarkable Strain Hardening in a Novel Fe50Mn20Cr20Ni10 Medium Entropy Alloy. J. Iron Steel Res. Int. 2021, 28, 1463–1470. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, C.; Gao, M.C.; Pei, Z.; Zhang, F.; Chen, Y.; Ma, D.; An, K.; Poplawsky, J.D.; Ouyang, L.; et al. High-Throughput Design of High-Performance Lightweight High-Entropy Alloys. Nat. Commun. 2021, 12, 4329. [Google Scholar] [CrossRef] [PubMed]
- Tsianikas, S.J.; Chen, Y.; Jeong, J.; Zhang, S.; Xie, Z. Forging Strength–Ductility Unity in a High Entropy Steel. J. Mater. Sci. Technol. 2022, 113, 158–165. [Google Scholar] [CrossRef]
- Mitrica, D.; Badea, I.C.; Serban, B.A.; Olaru, M.T.; Vonica, D.; Burada, M.; Piticescu, R.-R.; Popov, V.V. Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions. Materials 2021, 14, 1197. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, Z.; Ma, H.; Wang, G.; Zhou, Y. Effect of Retained Austenite on the Fatigue Performance of Novel High Carbon Quenching-Partitioning-Tempering Steel. J. Cent. South Univ. 2023, 30, 2107–2119. [Google Scholar] [CrossRef]
- Shaik, K.N.R.; Bortolotti, M.; Leizaola, I.; Lagos Gomez, M.A.; Menapace, C. Production and Characterization of Fine-Grained Multielement AlCoxCrFeNi (x = 1, 0.75, 0.5) Alloys for High-Temperature Applications. Materials 2024, 17, 4897. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Wen, B.; Wang, Z.; Jie, J.; Cao, Z.; et al. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Yang, C. Effect of Warm Rolling on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High-Entropy Alloy. J. Cent. South Univ. 2024, 31, 4060–4081. [Google Scholar] [CrossRef]
- Stallybrass, C.; Sauthoff, G. Ferritic Fe-Al-Ni-Cr Alloys with Coherent Precipitates for High-Temperature Applications. Mater. Sci. Eng. A 2004, 387–389, 985–990. [Google Scholar] [CrossRef]
- Nene, S.S.; Liu, K.; Frank, M.; Mishra, R.S.; Brennan, R.E.; Cho, K.C.; Li, Z.; Raabe, D. Enhanced Strength and Ductility in a Friction Stir Processing Engineered Dual Phase High Entropy Alloy. Sci. Rep. 2017, 7, 16167. [Google Scholar] [CrossRef]
- Kartikeya Sarma, I.; Selvaraj, N.; Kumar, A. Parametric Investigation and Characterization of 17-4 PH Stainless Steel Parts Fabricated by Selective Laser Melting. J. Cent. South Univ. 2023, 30, 855–870. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, W.; Li, W.; Liu, H.; Song, J.; Liu, Y.; Huang, Y.; Xia, Y.; Wang, Z.; Liu, B.; et al. Additive Manufacturing of Functional Gradient Materials: A Review of Research Progress and Challenges. J. Alloys Compd. 2024, 971, 172642. [Google Scholar] [CrossRef]
- Schafrik, R.; Sprague, R. Superalloy Technology—A Perspective on Critical Innovations for Turbine Engines. Key Eng. Mater. 2008, 380, 113–134. [Google Scholar] [CrossRef]
- Sun, F.; Xu, H.; Meng, Y.; Lu, Z.; Chen, S.; Wei, Q.; Bai, C. BERT and Pareto Dominance Applied to Biological Strategy Decision for Bio-Inspired Design. Adv. Eng. Inform. 2023, 55, 101904. [Google Scholar] [CrossRef]
- Pan, Q.; Ding, K.; Guo, S.; Lu, N.; Tao, N.; Zhu, T.; Lu, L. Superior Resistance to Cyclic Creep in a Gradient Structured Steel. Science 2025, 388, 82–88. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Z.; Ukai, S.; Oono, N.; Liu, C. Effects of Annealing Temperature on Nanoscale Particles in Oxide Dispersion Strengthened Fe-15Cr Alloy Powders with Ti and Zr Additions. J. Alloys Compd. 2017, 693, 177–187. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, D.; Zhang, C.; Zhou, X.; Wu, H.; Wang, S.; Wu, G.; Gao, J.; Zhao, H.; Mao, X. Influence of Typical Elements and Heat Treatment Parameters on Hardenability in Steel: A Review. J. Iron Steel Res. Int. 2024, 32, 1455–1467. [Google Scholar] [CrossRef]
- Rahman, M.H.; Rasel, M.A.J.; Smyth, C.M.; Waryoba, D.; Haque, A. Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures. Materials 2024, 18, 124. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, L.; Tan, Z.; Yang, J.; Yu, C.; Wang, S.; Yang, L.; Zheng, H.; Lei, X.; Misra, R.D.K.; et al. Unveiling the Relationship of Fatigue Behavior with the Microstructure of 321 Stainless Steel with Gradient Structure at 550 °C. Materialia 2025, 40, 102406. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Guo, W.; Xu, P.; Zhang, S.; Zhang, Y. Progress in Corrosion-Resistant Coatings on Surface of Low Alloy Steel. J. Iron Steel Res. Int. 2022, 30, 193–215. [Google Scholar] [CrossRef]
- Xavier, J.R. Novel Multifunctional Epoxy Based Graphitic Carbon Nitride/Silanized TiO2 Nanocomposite as Protective Coatings for Steel Surface against Corrosion and Flame in the Shipping Industry. J. Cent. South Univ. 2024, 31, 3394–3422. [Google Scholar] [CrossRef]
- Ban, H.; Shi, G. A Review of Research on High-Strength Steel Structures. Proc. Inst. Civ. Eng.-Struct. Build. 2018, 171, 625–641. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.-T.; Hokka, M.; Peura, P. Deformation Behavior of TRIP and DP Steels in Tension at Different Temperatures over a Wide Range of Strain Rates. Mater. Sci. Eng. A 2009, 507, 124–131. [Google Scholar] [CrossRef]
- Han, J.; Nam, J.-H.; Lee, Y.-K. The Mechanism of Hydrogen Embrittlement in Intercritically Annealed Medium Mn TRIP Steel. Acta Mater. 2016, 113, 1–10. [Google Scholar] [CrossRef]
- Herrera, C.; Ponge, D.; Raabe, D. Design of a Novel Mn-Based 1GPa Duplex Stainless TRIP Steel with 60% Ductility by a Reduction of Austenite Stability. Acta Mater. 2011, 59, 4653–4664. [Google Scholar] [CrossRef]
- Bai, Y.; Momotani, Y.; Chen, M.C.; Shibata, A.; Tsuji, N. Effect of Grain Refinement on Hydrogen Embrittlement Behaviors of High-Mn TWIP Steel. Mater. Sci. Eng. A 2016, 651, 935–944. [Google Scholar] [CrossRef]
- Raabe, D.; Sun, B.; Da Kwiatkowski Silva, A.; Gault, B.; Yen, H.-W.; Sedighiani, K.; Thoudden Sukumar, P.; Souza Filho, I.R.; Katnagallu, S.; Jägle, E.; et al. Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Met. Mater. Trans. A 2020, 51, 5517–5586. [Google Scholar] [CrossRef]
- Liang, W.; Geng, R.; Zhi, J.; Li, J.; Huang, F. Oxide Metallurgy Technology in High Strength Steel: A Review. Materials 2022, 15, 1350. [Google Scholar] [CrossRef]
- Li, K.; Yang, T.; Gong, N.; Wu, J.; Wu, X.; Zhang, D.Z.; Murr, L.E. Additive Manufacturing of Ultra-High Strength Steels: A Review. J. Alloys Compd. 2023, 965, 171390. [Google Scholar] [CrossRef]
- Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-Induced Plasticity (TRIP) in Advanced Steels: A Review. Mater. Sci. Eng. A 2020, 795, 140023. [Google Scholar] [CrossRef]
- Tan, X.; Ponge, D.; Lu, W.; Xu, Y.; He, H.; Yan, J.; Wu, D.; Raabe, D. Joint Investigation of Strain Partitioning and Chemical Partitioning in Ferrite-Containing TRIP-Assisted Steels. Acta Mater. 2020, 186, 374–388. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, W.; Wang, G.; Li, Z.; Jiang, Y.; Feng, J.; Chong, X. Exploring the Effect of Alloying Elements on the Thermoelasticity and Strength of Bcc Fe-Based Alloys by First-Principles Phonon Calculations. J. Mater. Res. Technol. 2024, 30, 954–965. [Google Scholar] [CrossRef]
- Li, T.; Yang, Z.; Cui, J.; Chen, W.; Almatani, R.; Wu, Y. Prediction and Optimization of Stretch Flangeability of Advanced High Strength Steels Utilizing Machine Learning Approaches. Sci. Rep. 2025, 15, 16296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sun, S.; Qiu, D.; Gibson, M.A.; Dargusch, M.S.; Brandt, M.; Qian, M.; Easton, M. Metal Alloys for Fusion-Based Additive Manufacturing. Adv. Eng. Mater. 2018, 20, 1700952. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef]
- An, D.; Zhou, Y.; Liu, X.; Wang, H.; Li, S.; Xiao, Y.; Li, R.; Li, X.; Han, X.; Chen, J. Exploring Structural Origins Responsible for the Exceptional Mechanical Property of Additively Manufactured 316L Stainless Steel via In-Situ and Comparative Investigations. Int. J. Plast. 2023, 170, 103769. [Google Scholar] [CrossRef]
- Jarlöv, A.; Zhu, Z.; Ji, W.; Gao, S.; Hu, Z.; Vivegananthan, P.; Tian, Y.; Kripalani, D.R.; Fan, H.; Seet, H.L.; et al. Recent Progress in High-Entropy Alloys for Laser Powder Bed Fusion: Design, Processing, Microstructure, and Performance. Mater. Sci. Eng. R Rep. 2024, 161, 100834. [Google Scholar] [CrossRef]
- Sun, F.; Xu, H.; Zhang, H.; Bai, C.; Colombo, P. Biomimetic Composite Structural Water Hydraulic Valve Plug for Erosive Wear Resistance Based on Additive Manufacturing Processes. J. Manuf. Process. 2023, 107, 34–42. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in Additive Manufacturing: A Review of Their Microstructure and Properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Tan, Q.; Chang, H.; Liang, G.; Luzin, V.; Yin, Y.; Wang, F.; Cheng, X.; Yan, M.; Zhu, Q.; Hutchinson, C.; et al. High Performance Plain Carbon Steels Obtained through 3D-Printing. Nat. Commun. 2024, 15, 10077. [Google Scholar] [CrossRef]
- Roberts, D.; Zhang, Y.; Charit, I.; Zhang, J. A Comparative Study of Microstructure and High-Temperature Mechanical Properties of 15-5 PH Stainless Steel Processed via Additive Manufacturing and Traditional Manufacturing. Prog. Addit. Manuf. 2018, 3, 183–190. [Google Scholar] [CrossRef]
- AlMangour, B.; Grzesiak, D.; Yang, J.-M. Scanning Strategies for Texture and Anisotropy Tailoring during Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites. J. Alloys Compd. 2017, 728, 424–435. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Eckert, J. Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys. J. Alloys Compd. 2017, 707, 27–34. [Google Scholar] [CrossRef]
- Demirci, S.; Tünçay, M.M. Growth Kinetics of the Borided 316L Stainless Steel Obtained by Selective Laser. J. Cent. South Univ. 2025, 32, 332–349. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Tsai, M.-Y.; Yen, S.-Y.; Lung, G.-H.; Yei, J.-T.; Hsu, K.-J.; Chen, K.-J. Comparing the Performance of Rolled Steel and 3D-Printed 316L Stainless Steel. Micromachines 2024, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Yang, H.; Liu, J.; Wang, J.; Deng, L.; Fang, L.; Yang, C. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Micromachines 2024, 15, 374. [Google Scholar] [CrossRef]
- Zhang, Z.; Mativenga, P.; Zhang, W.; Huang, S. Deep Learning-Driven Prediction of Mechanical Properties of 316L Stainless Steel Metallographic by Laser Powder Bed Fusion. Micromachines 2024, 15, 1167. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, K.; Zhu, J.; Jiao, X.; Du, X.; Wang, H. Characterization of Microstructure and Texture of Lean Duplex Stainless Steel 2101 Produced by Underwater Laser Wire Direct Energy Deposition. J. Cent. South Univ. 2024, 31, 72–83. [Google Scholar] [CrossRef]
- Caniou, R.; Rado, C.; Gaillard, G.-C.; Tosoni, O.; Flament, C.; Garandet, J.-P. Influence of Process Parameters on the Microstructure of Laser Printed NdFeB Alloys. J. Magn. Magn. Mater. 2023, 570, 170503. [Google Scholar] [CrossRef]
- Wang, H.; Feng, W.; Liu, D.; Zhang, G.; Liu, Y.; Wang, J.; Zou, L. Iron-Based Soft Magnetic Materials Fabricated by Laser Additive Manufacturing. Eng. Sci. 2023, 22, 809. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Robak, G.; Moj, K.; Krolczyk, G.M.; Kuntoğlu, M. Development of Lattice Structure with Selective Laser Melting Process: A State of the Art on Properties, Future Trends and Challenges. J. Manuf. Process. 2022, 81, 1040–1063. [Google Scholar] [CrossRef]
- Bahrudin, M.T.A.H.; Januddi, F.S.; Sarian, M.N.; Arafat, A.; Nur, H.; Md Yusop, A.H. Current Status of Additively Manufactured Porous Fe-Based Scaffolds for Bone Applications: A Review from Design, Corrosion and Biocompatibility Viewpoints. Mater. Today Commun. 2025, 42, 111247. [Google Scholar] [CrossRef]
- Limón, I.; Bedmar, J.; Fernández-Hernán, J.P.; Multigner, M.; Torres, B.; Rams, J.; Cifuentes, S.C. A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF). Materials 2024, 17, 6220. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Tan, X.; Ding, M.; Cao, B.; Iwamoto, T. A Review of Additively Manufactured Iron-Based Shape Memory Alloys. Crystals 2024, 14, 773. [Google Scholar] [CrossRef]
- Cheng, L.; Deng, C.; Huang, Y.; Li, K.; Han, C. Mechanical and Catalytic Degradation Properties of Porous FeMnCoCr High-Entropy Alloy Structures Fabricated by Selective Laser Melting Additive Manufacturing. Materials 2025, 18, 185. [Google Scholar] [CrossRef]
- Raabe, D. The Materials Science behind Sustainable Metals and Alloys. Chem. Rev. 2023, 123, 2436–2608. [Google Scholar] [CrossRef]
- Rechberger, K.; Spanlang, A.; Sasiain Conde, A.; Wolfmeir, H.; Harris, C. Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking. Steel Res. Int. 2020, 91, 2000110. [Google Scholar] [CrossRef]
- Wang, R.R.; Zhao, Y.Q.; Babich, A.; Senk, D.; Fan, X.Y. Hydrogen Direct Reduction (H-DR) in Steel Industry—An Overview of Challenges and Opportunities. J. Clean. Prod. 2021, 329, 129797. [Google Scholar] [CrossRef]
- Wei, S.; Ma, Y.; Raabe, D. One Step from Oxides to Sustainable Bulk Alloys. Nature 2024, 633, 816–822. [Google Scholar] [CrossRef]
- Wei, S.; Ma, Y.; Raabe, D. Reactive Vapor-Phase Dealloying-Alloying Turns Oxides into Sustainable Bulk Nano-Structured Porous Alloys. Sci. Adv. 2024, 10, eads2140. [Google Scholar] [CrossRef]
- Shang, Y.; Liu, S.; Liang, Z.; Pyczak, F.; Lei, Z.; Heidenreich, T.; Schökel, A.; Kai, J.; Gizer, G.; Dornheim, M.; et al. Developing Sustainable FeTi Alloys for Hydrogen Storage by Recycling. Commun. Mater. 2022, 3, 101. [Google Scholar] [CrossRef]
- Broadbent, C. Steel’s Recyclability: Demonstrating the Benefits of Recycling Steel to Achieve a Circular Economy. Int. J. Life Cycle Assess. 2016, 21, 1658–1665. [Google Scholar] [CrossRef]
- Han, L.; Mu, W.; Wei, S.; Liaw, P.K.; Raabe, D. Sustainable High-Entropy Materials? Sci. Adv. 2024, 10, eads3926. [Google Scholar] [CrossRef] [PubMed]
- Svetlizky, D. Laser-Based Directed Energy Deposition (DED-LB) of Advanced Materials. Mater. Sci. 2022, 840, 142967. [Google Scholar] [CrossRef]
- Heim, J.W.; Vander Wal, R.L. NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review. Minerals 2023, 13, 1274. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.-M.; Van Gerven, T.; Jones, P.T.; et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Kaya, M. An Overview of NdFeB Magnets Recycling Technologies. Curr. Opin. Green Sustain. Chem. 2024, 46, 100884. [Google Scholar] [CrossRef]
- Kwiatkowski Da Silva, A.; Souza Filho, I.R.; Lu, W.; Zilnyk, K.D.; Hupalo, M.F.; Alves, L.M.; Ponge, D.; Gault, B.; Raabe, D. A Sustainable Ultra-High Strength Fe18Mn3Ti Maraging Steel through Controlled Solute Segregation and α-Mn Nanoprecipitation. Nat. Commun. 2022, 13, 2330. [Google Scholar] [CrossRef]
- Xie, Q.; Suvarna, M.; Li, J.; Zhu, X.; Cai, J.; Wang, X. Online Prediction of Mechanical Properties of Hot Rolled Steel Plate Using Machine Learning. Mater. Des. 2021, 197, 109201. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, X. Artificial Intelligence-Powered Materials Science. Nano-Micro Lett. 2025, 17, 135. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Huang, H.; Wu, Y.; Lookman, T.; Su, Y. Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility. Engineering 2025, 46, 214–223. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials Discovery and Design Using Machine Learning. J. Mater. 2017, 3, 159–177. [Google Scholar] [CrossRef]
- Han, Z.; Xia, S.; Chen, Z.; Guo, Y.; Li, Z.; Huang, Q.; Liu, X.-J.; Xu, W.-W. Facilitated the Discovery of New γ/Γ′ Co-Based Superalloys by Combining First-Principles and Machine Learning. npj Comput. Mater. 2024, 10, 259. [Google Scholar] [CrossRef]
- Xiong, J.; Bai, B.-W.; Jiang, H.-R.; Faus-Golfe, A. Determinants of Saturation Magnetic Flux Density in Fe-Based Metallic Glasses: Insights from Machine-Learning Models. Rare Met. 2024, 43, 5256–5267. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.; Chen, C. Research on Fatigue Crack Propagation Prediction for Marine Structures Based on Automated Machine Learning. J. Mar. Sci. Eng. 2024, 12, 1492. [Google Scholar] [CrossRef]
- Shin, D.; Yamamoto, Y.; Brady, M.P.; Lee, S.; Haynes, J.A. Modern Data Analytics Approach to Predict Creep of High-Temperature Alloys. Acta Mater. 2019, 168, 321–330. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Pugliese, R. Unleashing the Power of Artificial Intelligence in Materials Design. Materials 2023, 16, 5927. [Google Scholar] [CrossRef]
- Zhang, Y. Thoughts on Experimental Design of Materials Research in the Era of Artificial Intelligence. Adv. Ceram. 2024, 45, 1–11. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, T.; Shi, S. Machine Learning of Mechanical Properties of Steels. Sci. China Technol. Sci. 2020, 63, 1247–1255. [Google Scholar] [CrossRef]
- Mamun, O.; Wenzlick, M.; Hawk, J.; Devanathan, R. A Machine Learning Aided Interpretable Model for Rupture Strength Prediction in Fe-Based Martensitic and Austenitic Alloys. Sci. Rep. 2021, 11, 5466. [Google Scholar] [CrossRef]
- Roy, A.; Taufique, M.F.N.; Khakurel, H.; Devanathan, R.; Johnson, D.D.; Balasubramanian, G. Machine-Learning-Guided Descriptor Selection for Predicting Corrosion Resistance in Multi-Principal Element Alloys. npj Mater. Degrad. 2022, 6, 9. [Google Scholar] [CrossRef]
- Roy, A.; Hussain, A.; Sharma, P.; Balasubramanian, G.; Taufique, M.F.N.; Devanathan, R.; Singh, P.; Johnson, D.D. Rapid Discovery of High Hardness Multi-Principal-Element Alloys Using a Generative Adversarial Network Model. Acta Mater. 2023, 257, 119177. [Google Scholar] [CrossRef]
- Tang, Y.; Wan, Y.; Wang, Z.; Zhang, C.; Han, J.; Hu, C.; Tang, C. Machine Learning and Python Assisted Design and Verification of Fe–Based Amorphous/Nanocrystalline Alloy. Mater. Des. 2022, 219, 110726. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liu, C.; Tan, K.; Ma, A.; Zheng, Y. Understanding of Tribocorrosion and Corrosion Characteristics of 304L Stainless Steel in Hot Concentrated Nitric Acid Solution. J. Cent. South Univ. 2024, 31, 3657–3673. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, J.; Su, C.; Zhang, C.; Zhang, H.; Guo, S. Catalytic Properties of Fe-Based Amorphous Alloys with Different Mo Content after Acid Corrosion. J. Non-Cryst. Solids 2024, 646, 123249. [Google Scholar] [CrossRef]
- Gao, F.; Gui, F.; Feng, D.; Qu, X.; Hu, F.; Yang, X. Study on the Corrosion Behavior of D36 Steel Plate and H62 Copper Alloy Net for Marine Aquaculture Facilities in Simulated Seawater. J. Mar. Sci. Eng. 2023, 11, 975. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Zhang, D.; Wang, P.; Wang, Y.; Li, C.; Zhu, L.; Wang, W.; Zheng, R.; Sun, C.; et al. Corrosion of Q235 Steel Affected by Pseudodesulfovibrio Cashew Differed with Electron Acceptors. J. Cent. South Univ. 2024, 31, 3352–3368. [Google Scholar] [CrossRef]
- Zhao, Y.-C.; Ma, H.-W.; Sun, J.-D.; Luo, J.-H.; Su, Y.; Feng, L.; Liu, T.-Z.; Zhan, F.-Q.; Yu, Z.-Q.; Yang, T.; et al. A Xanthium Sibiricum Biomimetic Fe-Based Medium-Entropy Alloy with Significant Antibacterial and Mechanical Behaviors. Rare Met. 2025, 44, 4913–4935. [Google Scholar] [CrossRef]
- Qiu, X.; Fan, X.; Xu, H.; Li, L.; Jiang, H.; Chen, C. Corrosion Characteristics of Low-Carbon Steel Anchor Bolts in a Carbonaceous Mudstone Environment. J. Cent. South Univ. 2023, 30, 1107–1122. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Ou-Yang, Z.; Su, H.; Wang, Y.; Li, Z.; Wu, T. Effect of Cathode Protection on Desulfovibrio Desulfuricans Corrosion of X80 Steel in a Marine Tidal Environment. J. Cent. South Univ. 2024, 31, 3612–3627. [Google Scholar] [CrossRef]
- Jianian, S.; Longjiang, Z.; Tiefan, L. High-Temperature Oxidation of Fe-Cr Alloys in Wet Oxygen. Oxid. Met. 1997, 48, 347–356. [Google Scholar] [CrossRef]
- McKamey, C.G.; DeVan, J.H.; Tortorelli, P.F.; Sikka, V.K. A Review of Recent Developments in Fe3 Al-Based Alloys. J. Mater. Res. 1991, 6, 1779–1805. [Google Scholar] [CrossRef]
- Kumar, R.; Singh Raman, R.K.; Bakshi, S.R.; Raja, V.S.; Parida, S. Exploring the Influence of Nanocrystalline Structure and Aluminum Content on High-Temperature Oxidation Behavior of Fe-Cr-Al Alloys. Materials 2024, 17, 1700. [Google Scholar] [CrossRef]
- Elliott, P. Practical Guide to High-Temperature Alloys (10056). Available online: https://nickelinstitute.org/en/library/technical-guides/practical-guide-to-high-temperature-alloys-10056/ (accessed on 25 March 2025).
- Wood, G.C. High-Temperature Oxidation of Alloys. Oxid. Met. 1970, 2, 11–57. [Google Scholar] [CrossRef]
- Deevi, S.C.; Sikka, V.K. Nickel and Iron Aluminides: An Overview on Properties, Processing, and Applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Yu, R.H.; Basu, S.; Ren, L.; Zhang, Y.; Parvizi-Majidi, A.; Unruh, K.M.; Xiao, J.Q. High Temperature Soft Magnetic Materials: FeCo Alloys and Composites. IEEE Trans. Magn. 2000, 36, 3388–3393. [Google Scholar] [CrossRef]
- Luo, W.; Hou, T.; Liang, X.; Zhang, D.; Lin, H.; Li, Y.; Zhao, T.; Hu, C.; Yershov, S.; Wu, K. Electronic-Scale Assessment of High-Temperature Oxidation Mechanisms in a Novel Fe-Based Alloy. J. Iron Steel Res. Int. 2024, 31, 982–997. [Google Scholar] [CrossRef]
- Becker, L.; Radtke, F.; Lentz, J.; Benito, S.; Broeckmann, C.; Weber, S. Powder Metallurgy and Additive Manufacturing of High-Nitrogen Alloyed FeCr(Si)N Stainless Steel. Adv. Eng. Mater. 2024, 2402293. [Google Scholar] [CrossRef]
- Wieczerzak, K.; Stygar, M.; Brylewski, T.; Chulist, R.; Bała, P.; Michler, J. Kinetics and Mechanisms of High-Temperature Oxidation in BCC and FCC High-Alloy Fe-Based Alloys with High Volume Fraction of Carbides. Mater. Des. 2024, 244, 113163. [Google Scholar] [CrossRef]
- He, M.-R.; Wang, S.; Shi, S.; Jin, K.; Bei, H.; Yasuda, K.; Matsumura, S.; Higashida, K.; Robertson, I.M. Mechanisms of Radiation-Induced Segregation in CrFeCoNi-Based Single-Phase Concentrated Solid Solution Alloys. Acta Mater. 2017, 126, 182–193. [Google Scholar] [CrossRef]
- El-Atwani, O.; Nathaniel, J.E.; Leff, A.C.; Baldwin, J.K.; Hattar, K.; Taheri, M.L. Evidence of a Temperature Transition for Denuded Zone Formation in Nanocrystalline Fe under He Irradiation. Mater. Res. Lett. 2017, 5, 195–200. [Google Scholar] [CrossRef]
- Yang, T.; Guo, W.; Poplawsky, J.D.; Li, D.; Wang, L.; Li, Y.; Hu, W.; Crespillo, M.L.; Yan, Z.; Zhang, Y.; et al. Structural Damage and Phase Stability of Al0.3CoCrFeNi High Entropy Alloy under High Temperature Ion Irradiation. Acta Mater. 2020, 188, 1–15. [Google Scholar] [CrossRef]
- Jin, H.-H.; Ko, E.; Lim, S.; Kwon, J.; Shin, C. Effect of Irradiation Temperature on Microstructural Changes in Self-Ion Irradiated Austenitic Stainless Steel. J. Nucl. Mater. 2017, 493, 239–245. [Google Scholar] [CrossRef]
- Hussain, A.; Dhaka, R.S.; Ryu, H.J.; Sharma, S.K.; Kulriya, P.K. A Critical Review on Temperature Dependent Irradiation Response of High Entropy Alloys. J. Alloys Compd. 2023, 948, 169624. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Q.; Zhang, W.; Zhang, Y.; Yan, D.; Li, Z. Insights into Irradiation-Induced Defect Evolution and Segregation in Metastable High-Entropy Alloys: Effects of High-Density Incoherent Planar Defects and Temperature. Acta Mater. 2025, 291, 120994. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Wang, H.; Liu, G.; Ding, X.; Sun, J. Designing Ultrastrong and Thermally Stable FeCrAl Alloys with the Fine-Grained Structure. J. Mater. Sci. Technol. 2024, 171, 198–208. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X. Research Progress of ODS FeCrAl Alloys–A Review of Composition Design. Materials 2023, 16, 6280. [Google Scholar] [CrossRef]
- Gong, X.; Li, R.; Sun, M.; Ren, Q.; Liu, T.; Short, M.P. Opportunities for the LWR ATF Materials Development Program to Contribute to the LBE-Cooled ADS Materials Qualification Program. J. Nucl. Mater. 2016, 482, 218–228. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, J.; Gao, X.; Wang, Y.; Cui, J.; Wang, T.; Chang, H. Irradiation Effects in High-Entropy Alloys and Their Applications. J. Alloys Compd. 2023, 930, 166768. [Google Scholar] [CrossRef]
- Tan, F.; Li, L.; Li, J.; Liu, B.; Liaw, P.K.; Fang, Q. Multiscale Modelling of Irradiation Damage Behavior in High Entropy Alloys. Adv. Powder Mater. 2023, 2, 100114. [Google Scholar] [CrossRef]
- Ostovari Moghaddam, A.; Cabot, A.; Trofimov, E.A. Does the Pathway for Development of next Generation Nuclear Materials Straightly Go through High-Entropy Materials? Int. J. Refract. Met. Hard Mater. 2021, 97, 105504. [Google Scholar] [CrossRef]
- Bigdeli, S.; Kjellqvist, L.; Naraghi, R.; Höglund, L.; Larsson, H.; Jonsson, T. Strategies for High-Temperature Corrosion Simulations of Fe-Based Alloys Using the Calphad Approach: Part I. J. Phase Equilibria Diffus. 2021, 42, 403–418. [Google Scholar] [CrossRef]
- Lu, J.; Ren, G.; Chen, Y.; Zhang, H.; Li, L.; Huang, A.; Liu, X.; Cai, H.; Shan, X.; Luo, L.; et al. Unraveling the Oxidation Mechanism of an AlCoCrFeNi High-Entropy Alloy at 1100 °C. Corros. Sci. 2022, 209, 110736. [Google Scholar] [CrossRef]
- Sun, Z.; Bei, H.; Yamamoto, Y. Microstructural Control of FeCrAl Alloys Using Mo and Nb Additions. Mater. Charact. 2017, 132, 126–131. [Google Scholar] [CrossRef]
- Niu, B.; Wang, Z.; Wang, Q.; Pan, Q.; Dong, C.; Zhang, R.; Liu, H.; Liaw, P.K.; Xu, W. Dual-Phase Synergetic Precipitation in Nb/Ta/Zr Co-Modified Fe–Cr–Al–Mo Alloy. Intermetallics 2020, 124, 106848. [Google Scholar] [CrossRef]
- Wen, D.; Jiang, B.; Huang, Z.; Kong, F.; Jiang, X.; Wang, A.; Hou, X.; Luan, J.; Wang, Q.; Liu, G.; et al. Rational Design and Multi-Stage Formation Mechanisms of FeCrNiAl Medium-Entropy Alloy Strengthened by Multi-Scaled Dual Phases. Mater. Charact. 2022, 194, 112430. [Google Scholar] [CrossRef]
- Niu, M.C.; Qiu, S.; Yu, Q.; Li, W.; Zhang, S.Z.; Guo, J.M.; Luan, J.H.; Wang, W.; Yang, T.; Wang, X.L.; et al. Achieving Excellent Elevated-Temperature Mechanical Properties in Dual-Phase High-Entropy Alloys via Nanoscale Co-Precipitation and Heterostructure Engineering. Acta Mater. 2025, 284, 120634. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Han, J.; Wang, X.; Jiang, W.; Liu, C.; Zhang, Z.; Liaw, P.K. Nanoprecipitate-Strengthened High-Entropy Alloys. Adv. Sci. 2021, 8, 2100870. [Google Scholar] [CrossRef]
- Sun, D.; Lu, Z.; Li, H.; Li, X.; Gao, S.; Xian, J.; Jin, F. Strength-Ductility Synergy of ODS-FeCrAl Alloy by Introduction of High-Entropy Reinforcements with Different Al Contents. J. Alloys Compd. 2025, 1014, 178754. [Google Scholar] [CrossRef]
- Deng, L.; Wang, C.; Luo, J.; Tu, J.; Guo, N.; Xu, H.; He, P.; Xia, S.; Yao, Z. Preparation and Property Optimization of FeCrAl-Based ODS Alloy by Machine Learning Combined with Wedge-Shaped Hot-Rolling. Mater. Charact. 2022, 188, 111894. [Google Scholar] [CrossRef]
- Nair, A.; Kumanan, S.; Prakash, C.; Mohan, D.G.; Saxena, K.K.; Kumar, S.; Kumar, G. Research Developments and Technological Advancements in Conventional and Non-Conventional Machining of Superalloys—A Review. J. Adhes. Sci. Technol. 2023, 37, 3053–3124. [Google Scholar] [CrossRef]
- Meng, Q.; Lai, L.; Rao, W.; Li, A.; Yu, H.; La, P. Creep Properties and Corrosion Behavior of TP347H Stainless Steel with Al in Molten Carbonate Salt. Materials 2024, 17, 6108. [Google Scholar] [CrossRef] [PubMed]
- Felix-Contreras, R.; De La Vega Olivas, J.; Arrieta-Gonzalez, C.D.; Chacon-Nava, J.G.; Rodriguez-Diaz, R.A.; Gonzalez-Rodriguez, J.G.; Porcayo-Calderon, J. Kinetic and Thermodynamic Aspects of the Degradation of Ferritic Steels Immersed in Solar Salt. Materials 2024, 17, 5776. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Kim, M.W.; Na, J.; Lee, M.; Kim, S.J.; Kim, D.-J.; Yoon, Y.S. A Study on the Corrosion Behavior of Fe/Ni-Based Structural Materials in Unpurified Molten Chloride Salt. Materials 2025, 18, 1653. [Google Scholar] [CrossRef]
- Du, K.; Gao, E.; Zhang, C.; Ma, Y.; Wang, P.; Yu, R.; Li, W.; Zheng, K.; Cheng, X.; Tang, D.; et al. An Iron-Base Oxygen-Evolution Electrode for High-Temperature Electrolyzers. Nat. Commun. 2023, 14, 253. [Google Scholar] [CrossRef]
- Tang, C.; Shi, H.; Jianu, A.; Weisenburger, A.; Victor, G.; Grosse, M.; Müller, G.; Seifert, H.J.; Steinbrück, M. High-Temperature Oxidation of AlCrFeNi-(Mn or Co) High-Entropy Alloys: Effect of Atmosphere and Reactive Element Addition. Corros. Sci. 2021, 192, 109809. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, C.; Chen, Y.; Chen, W.-Y.; Park, J.-S.; Kenesei, P.; Almer, J.; Burns, J.; Wu, Y.; Li, M. High-Energy Synchrotron x-Ray Study of Deformation-Induced Martensitic Transformation in a Neutron-Irradiated Type 316 Stainless Steel. Acta Mater. 2020, 200, 315–327. [Google Scholar] [CrossRef]
- Kotan, H.; Darling, K.A.; Luckenbaugh, T. High Temperature Mechanical Properties and Microstructures of Thermally Stabilized Fe-Based Alloys Synthesized by Mechanical Alloying Followed by Hot Extrusion. Met. Mater. Int. 2021, 27, 1790–1797. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, X.; Zheng, X.; Lan, P.; Li, J. Precipitation and Growth of Laves Phase and NbC during Aging and Its Effect on Tensile Properties of a Novel 15Cr–22Ni–1Nb Austenitic Heat-Resistant Steel. Mater. Sci. Eng. A 2022, 854, 143822. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Tikhonovsky, M.A.; Zherebtsov, S.V. Structure and High Temperature Mechanical Properties of Novel Non-Equiatomic Fe-(Co, Mn)-Cr-Ni-Al-(Ti) High Entropy Alloys. Intermetallics 2018, 102, 140–151. [Google Scholar] [CrossRef]
- Carsí, M.; Llaneza, J.; Ruano, O.A. Microstructure and Stability Conditions for Hot Deformation of a Modified Iron-Based Superalloy. Mater. Sci. Technol. 2019, 35, 2217–2224. [Google Scholar] [CrossRef]
- Ji, G.; Li, F.; Li, Q.; Li, H.; Li, Z. A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel. Mater. Sci. Eng. A 2011, 528, 4774–4782. [Google Scholar] [CrossRef]
- Xu, T.; Li, J.; Yu, Y.; Li, T.; Wang, L.; Tang, H.; Qiao, Z. High-Temperature Tribological Properties of Fe50Mn25Cr5Al15Ti5 Iron-Based High-Entropy Alloys. Tribol. Int. 2025, 204, 110423. [Google Scholar] [CrossRef]
- Wakai, E.; Noto, H.; Shibayama, T.; Furuya, K.; Ando, M.; Kamada, T.; Ishida, T.; Makimura, S. Microstructures and Hardness of BCC Phase Iron-Based High Entropy Alloy Fe-Mn-Cr-V-Al-C. Mater. Charact. 2024, 211, 113881. [Google Scholar] [CrossRef]
- Winkelmann, H.; Varga, M.; Badisch, E.; Danninger, H. Wear Mechanisms at High Temperatures: Part 2: Temperature Effect on Wear Mechanisms in the Erosion Test. Tribol. Lett. 2009, 34, 167–175. [Google Scholar] [CrossRef]
- Singla, Y.K.; Maughan, M.R.; Arora, N.; Dwivedi, D.K. Enhancing the Wear Resistance of Iron-Based Alloys: A Comprehensive Review of Alloying Element Effects. J. Manuf. Process. 2024, 120, 135–160. [Google Scholar] [CrossRef]
- Vo, N.Q.; Liebscher, C.H.; Rawlings, M.J.S.; Asta, M.; Dunand, D.C. Creep Properties and Microstructure of a Precipitation-Strengthened Ferritic Fe–Al–Ni–Cr Alloy. Acta Mater. 2014, 71, 89–99. [Google Scholar] [CrossRef]
- Rawlings, M.J.S.; Liebscher, C.H.; Asta, M.; Dunand, D.C. Effect of Titanium Additions upon Microstructure and Properties of Precipitation-Strengthened Fe-Ni-Al-Cr Ferritic Alloys. Acta Mater. 2017, 128, 103–112. [Google Scholar] [CrossRef]
- Baik, S.-I.; Rawlings, M.J.S.; Dunand, D.C. Effect of Hafnium Micro-Addition on Precipitate Microstructure and Creep Properties of a Fe-Ni-Al-Cr-Ti Ferritic Superalloy. Acta Mater. 2018, 153, 126–135. [Google Scholar] [CrossRef]
- Dymáček, P.; Jarý, M.; Bártková, D.; Luptáková, N.; Gamanov, Š.; Bořil, P.; Georgiev, V.; Svoboda, J. High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy. Materials 2024, 17, 4984. [Google Scholar] [CrossRef]
- Lu, Q.; Van Der Zwaag, S.; Xu, W. High-Throughput Design of Low-Activation, High-Strength Creep-Resistant Steels for Nuclear-Reactor Applications. J. Nucl. Mater. 2016, 469, 217–222. [Google Scholar] [CrossRef]
- AlMangour, B.; Baek, M.-S.; Grzesiak, D.; Lee, K.-A. Strengthening of Stainless Steel by Titanium Carbide Addition and Grain Refinement during Selective Laser Melting. Mater. Sci. Eng. A 2018, 712, 812–818. [Google Scholar] [CrossRef]
- AlMangour, B.; Kim, Y.-K.; Grzesiak, D.; Lee, K.-A. Novel TiB2-Reinforced 316L Stainless Steel Nanocomposites with Excellent Room- and High-Temperature Yield Strength Developed by Additive Manufacturing. Compos. Part. B Eng. 2019, 156, 51–63. [Google Scholar] [CrossRef]
- Han, J.Y.; Wang, L.; Hu, P.; Hu, B.L.; Ma, S.J.; Gao, L.L.; Bai, R.; Wang, Q.; Feng, R.; Jin, B.; et al. Research Progress in Modification of MoSi2 Coatings on Surface of Refractory Metals and Their Alloys: A Review. Rare Met. 2024, 44, 793–821. [Google Scholar] [CrossRef]
- Shunan, N.; Lijun, Z.; Xudong, L.; Dianli, Q.; Jiaao, P. Research Progress of Al2O3-SiC Composite Ceramic. Adv. Ceram. 2024, 45, 231–246. [Google Scholar]
- Liao, M.; Hu, X.; Zhong, C.; Xu, P.; Wang, X.; Zhang, Z.; Zhou, P.; Zhang, M.; Su, Z.; Huang, Q. Controlling the Si/C Ratio in SiC Matrix Based on the Modified Polymethysilane for C/C–SiC Composites with Enhanced Mechanical Properties. J. Adv. Ceram. 2024, 13, 220–236. [Google Scholar] [CrossRef]
- Miracle, D.B. Metal Matrix Composites—From Science to Technological Significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Shi, C.; Liu, X.; Hao, D.; Lu, H.; Chen, Y. Research on Interfacial Bonding Strength Between Alloy Matrix and PcBN Composite Sheet. Adv. Ceram. 2024, 45, 558–568. [Google Scholar]
- Dong, W.; Zhao, Y.; Wang, X.; Yuan, X.; Bu, K.; Dong, C.; Wang, R.; Huang, F. Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance. Adv. Mater. 2018, 30, 1801409. [Google Scholar] [CrossRef]
- Moureaux, F.; Stevens, P.; Toussaint, G.; Chatenet, M. Development of an Oxygen-Evolution Electrode from 316L Stainless Steel: Application to the Oxygen Evolution Reaction in Aqueous Lithium–Air Batteries. J. Power Sources 2013, 229, 123–132. [Google Scholar] [CrossRef]
- Moureaux, F.; Stevens, P.; Toussaint, G.; Chatenet, M. Timely-Activated 316L Stainless Steel: A Low Cost, Durable and Active Electrode for Oxygen Evolution Reaction in Concentrated Alkaline Environments. Appl. Catal. B Environ. 2019, 258, 117963. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Barhoumi, E.M.; Ben Belgacem, I.; Mansir, I.B.; Aliyu, M.; Emori, W.; Uzoma, P.C.; Beitelmal, W.H.; Akyüz, E.; Radwan, A.B.; et al. A Focused Review of the Hydrogen Storage Tank Embrittlement Mechanism Process. Int. J. Hydrogen Energy 2023, 48, 12935–12948. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen Embrittlement in Different Materials: A Review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.; Xie, D.; Li, S.; Zhang, Y.; Zhu, T.; Raabe, D.; Ma, E.; Li, J.; Shan, Z. Quantitative Tests Revealing Hydrogen-Enhanced Dislocation Motion in α-Iron. Nat. Mater. 2023, 22, 710–716. [Google Scholar] [CrossRef]
- Luo, H.; Pan, Z.; Yang, T.; Chang, W.; Zhang, D.; Cheng, H.; Li, X.; Raabe, D. A High-Entropy Alloy for Superior Resistance to Biogenic Sulfuric Acid Corrosion and Hydrogen Embrittlement. Matter 2025, 8, 101944. [Google Scholar] [CrossRef]
- Ustolin, F.; Paltrinieri, N.; Berto, F. Loss of Integrity of Hydrogen Technologies: A Critical Review. Int. J. Hydrogen Energy 2020, 45, 23809–23840. [Google Scholar] [CrossRef]
- Briottet, L.; Batisse, R.; Bernard, P.; Duret-Thual, C.; Heuzé, J.-L.; Martin, F.; Thebault, F.; Vucko, F. Industrial Consequences of Hydrogen Embrittlement. In Mechanics—Microstructure—Corrosion Coupling; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–244. ISBN 978-1-78548-309-7. [Google Scholar]
- Balitskii, A.I.; Ivaskevich, L.M. Assessment of Hydrogen Embrittlement in High-Alloy Chromium-Nickel Steels and Alloys in Hydrogen at High Pressures and Temperatures. Strength Mater. 2018, 50, 880–887. [Google Scholar] [CrossRef]
- Gong, P.; Turk, A.; Nutter, J.; Yu, F.; Wynne, B.; Rivera-Diaz-del-Castillo, P.; Mark Rainforth, W. Hydrogen Embrittlement Mechanisms in Advanced High Strength Steel. Acta Mater. 2022, 223, 117488. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Lee, T.; Lee, J.; Chun, Y.S.; Lee, C.S. Role of Cu on Hydrogen Embrittlement Behavior in Fe–Mn–C–Cu TWIP Steel. Int. J. Hydrogen Energy 2015, 40, 7409–7419. [Google Scholar] [CrossRef]
- Koyama, M.; Akiyama, E.; Lee, Y.-K.; Raabe, D.; Tsuzaki, K. Overview of Hydrogen Embrittlement in High-Mn Steels. Int. J. Hydrogen Energy 2017, 42, 12706–12723. [Google Scholar] [CrossRef]
- Li, X.; Yin, J.; Zhang, J.; Wang, Y.; Song, X.; Zhang, Y.; Ren, X. Hydrogen Embrittlement and Failure Mechanisms of Multi-Principal Element Alloys: A Review. J. Mater. Sci. Technol. 2022, 122, 20–32. [Google Scholar] [CrossRef]
- Tan, S.M.; Gao, S.J.; Wan, X.J. Temperature Effects on Gaseous Hydrogen Embrittlement of a High-Strength Steel. J. Mater. Sci. Lett. 1993, 12, 643–646. [Google Scholar] [CrossRef]
- Okuno, K.; Takai, K. Determination of Hydrogen Diffusibility and Embrittlement Susceptibility of High-Strength Steel Evaluated at Different Temperatures Based on the Local Equilibrium Theory. Acta Mater. 2023, 246, 118725. [Google Scholar] [CrossRef]
- Neuharth, J.J.; Cavalli, M.N. Investigation of High-Temperature Hydrogen Embrittlement of Sensitized Austenitic Stainless Steels. Eng. Fail. Anal. 2015, 49, 49–56. [Google Scholar] [CrossRef]
- Savaedi, Z.; Motallebi, R.; Mirzadeh, H.; Malekan, M. Superplasticity of Bulk Metallic Glasses (BMGs): A Review. J. Non-Cryst. Solids 2022, 583, 121503. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, M.; Dong, Y.; Yuan, Y.; Zhou, X.; Meng, X. Processing, Production and Anticorrosion Behavior of Metallic Glasses: A Critical Review. J. Non-Cryst. Solids 2023, 612, 122355. [Google Scholar] [CrossRef]
- Lashgari, H.R.; Chu, D.; Xie, S.; Sun, H.; Ferry, M.; Li, S. Composition Dependence of the Microstructure and Soft Magnetic Properties of Fe-Based Amorphous/Nanocrystalline Alloys: A Review Study. J. Non-Cryst. Solids 2014, 391, 61–82. [Google Scholar] [CrossRef]
- Liu, T.; Li, F.; Wang, A.; Xie, L.; He, Q.F.; Luan, J.; He, A.; Wang, X.; Liu, C.T.; Yang, Y. High Performance Fe-Based Nanocrystalline Alloys with Excellent Thermal Stability. J. Alloys Compd. 2019, 776, 606–613. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Qiu, Z.; Zeng, D. Insight into Efficient Removal of Tetracycline from Water by Fe–Si–B Amorphous Alloys. J. Non-Cryst. Solids 2025, 650, 123377. [Google Scholar] [CrossRef]
- Li, H.; Wang, A.; Liu, T.; Chen, P.; He, A.; Li, Q.; Luan, J.; Liu, C.T. Design of Fe-Based Nanocrystalline Alloys with Superior Magnetization and Manufacturability. Mater. Today 2021, 42, 49–56. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L. A New Fe-Based Bulk Glassy Alloy with Outstanding Mechanical Properties. Adv. Mater. 2004, 16, 2189–2192. [Google Scholar] [CrossRef]
- Xu, F.; Yao, H.; Tang, K.; Li, Y.; Han, F.; Tan, Z.; He, D.; Yang, Y.; Liu, Y.; Zhou, Z. Degeneration of Thermal Insulation Property for Fe-Based Amorphous Coating during Long-Term Heat Exposure. J. Non-Cryst. Solids 2023, 606, 122203. [Google Scholar] [CrossRef]
- Knipling, K.E.; Daniil, M.; Willard, M.A. Fe-Based Nanocrystalline Soft Magnetic Alloys for High-Temperature Applications. Appl. Phys. Lett. 2009, 95, 222516. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Zhang, W.; Fang, C.; Wang, X.; Qin, F.; Yamaura, S.; Yokoyama, Y. Effects of Alloying Elements on the Thermal Stability and Corrosion Resistance of an Fe-Based Metallic Glass with Low Glass Transition Temperature. Met. Mater. Trans. A 2014, 45, 2393–2398. [Google Scholar] [CrossRef]
- Ding, J.; Xu, H.; Shi, Z.; Li, X.; Zhang, T. Effect of Primary α-Fe on Soft Magnetic Properties of FeCuNbSiB Amorphous/Nanocrystalline Alloy. J. Non-Cryst. Solids 2021, 571, 121079. [Google Scholar] [CrossRef]
- Hou, L.; Li, M.; Jiang, C.; Fan, X.; Luo, Q.; Chen, S.; Song, P.; Li, W. Thermal and Magnetic Properties of Fe(Co)BCCu Amorphous Alloys with High Saturation Magnetization of 1.77 T. J. Alloys Compd. 2021, 853, 157071. [Google Scholar] [CrossRef]
- Shi, L.; Hu, X.; Li, Y.; Yuan, G.; Yao, K. The Complementary Effects of Fe and Metalloids on the Saturation Magnetization of Fe-Based Amorphous Alloys. Intermetallics 2021, 131, 107116. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhu, L.; Ye, L.X.; Gao, X.; Jiang, S.S.; Yang, H.; Wang, Y.G. Nanoscale Structural Heterogeneity Perspective on the Improved Magnetic Properties during Relaxation in a Fe-Based Metallic Glass. J. Non-Cryst. Solids 2021, 571, 121078. [Google Scholar] [CrossRef]
- Meng, Y.; Pang, S.; Chang, C.; Bai, X.; Zhang, T. Nanocrystalline Fe83Si4B10P2Cu1 Ribbons with Improved Soft Magnetic Properties and Bendability Prepared via Rapid Annealing of the Amorphous Precursor. J. Magn. Magn. Mater. 2021, 523, 167583. [Google Scholar] [CrossRef]
- Diaz, Y.; Sevilla, A.; Mónaco, A.; Méndez, F.J.; Rosales, P.; García, L.; Brito, J.L. Metallic Monoliths of AISI 304 Stainless Steel, Aluminum, FeCrAlloy® and Brass, Coated by Mo and W Oxides for Thiophene Hydrodesulfurization. Fuel 2013, 110, 235–248. [Google Scholar] [CrossRef]
- Magnier, L.; Cossard, G.; Martin, V.; Pascal, C.; Roche, V.; Sibert, E.; Shchedrina, I.; Bousquet, R.; Parry, V.; Chatenet, M. Fe–Ni-Based Alloys as Highly Active and Low-Cost Oxygen Evolution Reaction Catalyst in Alkaline Media. Nat. Mater. 2024, 23, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lei, F.; Li, Z.; Li, G.; Zhao, Y. Research Progress of Iron-Based Oxygen Reduction Catalysts in Fuel Cells. Fine Chem. 2023, 40, 233–243. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, J.C.; Liang, S.X.; Zhang, W.C.; Wang, W.M.; Zhang, L.C. Activation of Peroxymonosulfate by Fe78Si9B13 Metallic Glass: The Influence of Crystallization. J. Alloys Compd. 2017, 728, 525–533. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhan, Y.; Zhang, Y.; Zhao, X.; Yang, M.; Ruan, W.; Zhang, Z.; Liang, X.; Ma, J. Peracetic Acid-Induced Nanoengineering of Fe-Based Metallic Glass Ribbon in Application of Efficient Drinking Water Treatment. Appl. Catal. B Environ. Energy 2024, 355, 124161. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Q. Annealing-Induced Different Decolorization Performances of Fe-Mo-Si-B Amorphous Alloys. J. Non-Cryst. Solids 2017, 470, 93–98. [Google Scholar] [CrossRef]
- Chen, S.; Chen, N.; Cheng, M.; Luo, S.; Shao, Y.; Yao, K. Multi-Phase Nanocrystallization Induced Fast Degradation of Methyl Orange by Annealing Fe-Based Amorphous Ribbons. Intermetallics 2017, 90, 30–35. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.; Zhang, H. Effects of the Addition of Co, Ni or Cr on the Decolorization Properties of Fe-Si-B Amorphous Alloys. J. Phys. Chem. Solids 2017, 110, 152–160. [Google Scholar] [CrossRef]
- Wang, C.; Tonna, C.; Mei, D.; Buhagiar, J.; Zheludkevich, M.L.; Lamaka, S.V. Biodegradation Behaviour of Fe-Based Alloys in Hanks’ Balanced Salt Solutions: Part II. The Evolution of Local pH and Dissolved Oxygen Concentration at Metal Interface. Bioact. Mater. 2022, 7, 412–425. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H. A Short Review of Antibacterial Cu-Bearing Stainless Steel: Antibacterial Mechanisms, Corrosion Resistance, and Novel Preparation Techniques. J. Iron Steel Res. Int. 2024, 31, 24–45. [Google Scholar] [CrossRef]
- Dong, C.; Xu, Q.; Ma, Y. Towards High-Field Applications: High-Performance, Low-Cost Iron-Based Superconductors. Natl. Sci. Rev. 2024, 11, nwae122. [Google Scholar] [CrossRef]
- Paglione, J.; Greene, R.L. High-Temperature Superconductivity in Iron-Based Materials. Nat. Phys. 2010, 6, 645–658. [Google Scholar] [CrossRef]
- Kim, A.S.; Camp, F.E. High Performance NdFeB Magnets (Invited). J. Appl. Phys. 1996, 79, 5035–5039. [Google Scholar] [CrossRef]
- Crozier-Bioud, T.; Momeni, V.; Gonzalez-Gutierrez, J.; Kukla, C.; Luca, S.; Rolere, S. Current Challenges in NdFeB Permanent Magnets Manufacturing by Powder Injection Molding (PIM): A Review. Mater. Today Phys. 2023, 34, 101082. [Google Scholar] [CrossRef]
- Sundar, R.S.; Deevi, S.C. Soft Magnetic FeCo Alloys: Alloy Development, Processing, and Properties. Int. Mater. Rev. 2005, 50, 157–192. [Google Scholar] [CrossRef]
- Fei, Y.; Yao, J.; Cheng, W.; Jiao, W. Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage. Materials 2024, 18, 113. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, X.; Wei, T.; Zhan, J. Hydrothermal Preparation of Iron/Carbon Composites and Their Degradation for Trichloroethylene in Groundwater. Fine Chem. 2022, 39, 812–818. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Ni, Y.; Yang, K.; Wang, P.; Wang, X.; Liu, R.; Sun, B.; Bai, C. Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities. Materials 2025, 18, 2989. https://doi.org/10.3390/ma18132989
Qiao Y, Ni Y, Yang K, Wang P, Wang X, Liu R, Sun B, Bai C. Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities. Materials. 2025; 18(13):2989. https://doi.org/10.3390/ma18132989
Chicago/Turabian StyleQiao, Yingjie, Yanzhao Ni, Kun Yang, Peng Wang, Xiaodong Wang, Ruiliang Liu, Bin Sun, and Chengying Bai. 2025. "Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities" Materials 18, no. 13: 2989. https://doi.org/10.3390/ma18132989
APA StyleQiao, Y., Ni, Y., Yang, K., Wang, P., Wang, X., Liu, R., Sun, B., & Bai, C. (2025). Iron-Based High-Temperature Alloys: Alloying Strategies and New Opportunities. Materials, 18(13), 2989. https://doi.org/10.3390/ma18132989