Influence of Moisture and Tool Temperature on the Maximum Stretch and Process Stability in High-Speed 3D Paper Forming
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- l1-a (green) corresponds to a straight region of the formed contour, which experiences moderate deformation.
- l1-b follows a curved trajectory, representing the area of greatest deformation. This section is subjected to the highest local strain and represents the most strongly formed zone of the material.
3.1. Results on Material Moisture
3.2. Results on Maximum Material Stretch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Östlund, S. Three-dimensional Deformation and Damage Mechanisms in Forming of Advanced Structures in Paper. In Advances in Pulp and Paper Research, Oxford 2017, Trans. of the XVIth Fund. Res. Symp. Oxford, 2017; Fundamental Research Committee (FRC): Manchester, UK, 2017; pp. 489–594. [Google Scholar]
- Leminen, V.; Matthews, S.; Pesonen, A.; Tanninen, P.; Varis, J. Combined effect of blank holding force and forming force on the quality of press-formed paperboard trays. Procedia Manuf. 2018, 17, 1120–1127. [Google Scholar] [CrossRef]
- Tanninen, P.; Leminen, V.; Eskelinen, H.; Lindell, H.; Varis, J. Controlling the Folding of the Blank in Paperboard Tray Press Forming. BioResources 2015, 10, 5191–5202. [Google Scholar] [CrossRef]
- Hauptmann, M. 3D-forming of Paper Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Östlund, M.; Borodulina, S.; Östlund, S. Influence of Paperboard Structure and Processing Conditions on Forming of Complex Paperboard Structures. Packag. Technol. Sci. 2011, 24, 331–341. [Google Scholar] [CrossRef]
- Hauptmann, M.; Kustermann, T.; Schmalholz, M.; Haug, H.; Majschak, J.P. Examination of the Transferability of Technological key Features of Paperboard Deep Drawing Towards the Application in Fast-Running Packaging Machines. Packag. Technol. Sci. 2017, 30, 21–31. [Google Scholar] [CrossRef]
- Coles, R.; McDowell, D.; Kirwan, M.J. (Eds.) Food Packaging Technology; Blackwell: Oxford, UK; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Hauptmann, M. Neue Einsatzpotentiale naturfaserbasierter Materialien in der Konsumgüterproduktion durch die technologische Entwicklung des Ziehverfahrens am Beispiel der Verpackung. Ph.D. Thesis, Technischen Universität Dresden, Dresden, Germany, 2017. [Google Scholar]
- Mark, R.E.; Habeger, C.; Borch, J.; Lyne, M.B. Handbook of Physical Testing of Paper; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Salmen, L.; Back, E. Moisture-dependent thermal softening of paper, evaluated by its elastic modulus. TAPPI 1980, 63, 117–120. [Google Scholar]
- Salmén, L. On the Interaction Between Moisture and Wood Fibre Materials. MRS Proc. 1990, 197, 193–201. [Google Scholar] [CrossRef]
- Beyler, C.; Hirschler, M. Thermal decomposition of polymers. In SFPE Handbook of Fire Protection Engineering, 2nd ed.; National Fire Protection Association Society of Fire Protection Engineers: Quincy, MA, USA, 2002. [Google Scholar]
- Vishtal, A.; Retulainen, E. Boosting the extensibility potential of fibre networks: A review. BioResources 2014, 9, 7951–8001. [Google Scholar] [CrossRef]
- Linvill, E.; Östlund, S. The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper. Exp. Mech. 2014, 54, 1329–1341. [Google Scholar] [CrossRef]
- Franke, W.; Stein, P.; Dörsam, S.; Groche, P. Formability of paperboard during deep-drawing with local steam application. In Proceedings of the 21st International ESAFORM Conference on Material Forming: ESAFORM 2018, Palermo, Italy, 23–25 April 2018; p. 100008. [Google Scholar]
- Stotz, H.; Vogt, L.; Kasparian, T.; Klauser, M.; Rauschnabel, J.; Hauptmann, M. Advanced Development in 3D Forming Methods for Paper Packaging, Proceedings of the TAPPICon 2022, Charlotte, NC, USA, 30 April–4 May 2022; Curran Associates, Inc.: Red Hook, NY, USA, 2022. [Google Scholar]
- Niskanen, K. Paper Physics; Fapet Oy: Helsinki, Finland, 1998. [Google Scholar]
- KAPAG Karton + Papier AG. FibreForm® White Duo. Uncoated White 3D Solid Bleached Paperboard. 2022. Available online: https://www.kapag.com/fileadmin/user_upload/products/Datenblaetter_E/FibreForm_White_Duo_E_01.pdf (accessed on 19 October 2024).
- ISO 1924-3;2005; Paper and Board—Determination of Tensile Properties—Part 3: Constant Rate of Elongation Method (100 mm/min). ISO: Geneva, Switzerland, 2005.
- Ceccato, C.; Kulachenko, A.; Barbier, C. Investigation of rolling contact between metal and rubber-covered cylinders governing the paper compaction process. Int. J. Mech. Sci. 2019, 163, 105156. [Google Scholar] [CrossRef]
- DIN EN ISO 287; Paper and Board—Determination of Moisture Content of a Lot—Oven-Drying Method. ISO: Geneva, Switzerland, 2017.
- Krolle, A. Benetzbarkeit der Papieroberfläche Charakterisierung der Papieroberfläche für nachfolgende Verarbeitungsprozesse. Ph.D. Dissertation, Technischen Universität Graz, Graz, Australia, 2014. [Google Scholar]
- Mühlbauer, W.; Müller, J. Drying Atlas. Drying Kinetics and Quality of Agricultural Products; Woodhead Publishing: Duxford, UK, 2020. [Google Scholar]
- Bos, J.H. Das Papierbuch. Handbuch der Papierherstellung, 2nd ed.; ECA Pulp & Paper b.v.: Houten, The Netherlands, 2006. [Google Scholar]
- Ramarao, B.; Massoquete, A.; Lavrykov, S.; Ramaswamy, S. Moisture Diffusion Inside Paper Materials in the Hygroscopic Range and Characteristics of Diffusivity Parameters. Dry. Technol. 2003, 21, 2007–2056. [Google Scholar] [CrossRef]
- Stumm, D. Untersuchungen zum chemischen Wasserrückhaltevermögen und zur Trocknungsfähigkeit von Papierstoffen unter besonderer Berücksichtigung der Rolle von chemischen Additiven. Ph.D. Thesis, Technischen Universität Darmstadt, Darmstadt, Germany, 2007. [Google Scholar]
- Kröll, K.; Kast, W. Trocknungstechnik—Band 3: Trocknen und Trockner in der Produktion; Springer: Berlin, Germany, 1989. [Google Scholar]
- Stotz, H.; Klauser, M.; Albrecht, H.; Vogt, L.; Oberst, L.; Beck, M. Verfahren zu einer Vorkonditionierung von einer auf Fasermaterial basirenden Verpackungsmaterialbahn in einem Verpackungsprozess sowie Vorkonditioniervorrichtung zu einem Durchführen des Verfahrens. Patent No. WO 2022/258709 A1, 15 December 2022. [Google Scholar]
Factor | Factor Levels |
---|---|
Dwell time in water bath [s] | 0 |
1 | |
2 | |
3 | |
4 | |
Temperature punch [°C] | set: 70 (measured on punch: 64.5) |
set: 95 (measured on punch:86.5) | |
set: 120 (measured on punch: 109.8) | |
Cycle time [cycles/min] ≙ contact time punch [s] | 10 cycles/min ≙ 4.332 s |
40 cycles/ min ≙ 1.083 s |
Term | Coefficient | Significance |
---|---|---|
Constant | 17.878 | 0 |
Dwell time in water bath [s] | 1.600 | 8.538 × 10−7 |
Temperature punch [°C] | −0.049 | 2.574 × 10−10 |
Contact time punch [s] | −0.337 | 9.638 × 10−6 |
Dwell time in water bath [s]^2 | −0.265 | 0.0001 |
R-Square | 0.895 | |
Adj. R-Square | 0.878 |
Term | Optimal |
---|---|
Dwell time in water bath [s] | 3.027 |
Temperature punch [°C] | 70.003 |
Contact time punch [s] | 1.083 |
Stretch [%] | 16.495 |
Desirability | 0.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stotz, H.; Klauser, M.; Rauschnabel, J.; Hauptmann, M. Influence of Moisture and Tool Temperature on the Maximum Stretch and Process Stability in High-Speed 3D Paper Forming. Materials 2025, 18, 2894. https://doi.org/10.3390/ma18122894
Stotz H, Klauser M, Rauschnabel J, Hauptmann M. Influence of Moisture and Tool Temperature on the Maximum Stretch and Process Stability in High-Speed 3D Paper Forming. Materials. 2025; 18(12):2894. https://doi.org/10.3390/ma18122894
Chicago/Turabian StyleStotz, Heike, Matthias Klauser, Johannes Rauschnabel, and Marek Hauptmann. 2025. "Influence of Moisture and Tool Temperature on the Maximum Stretch and Process Stability in High-Speed 3D Paper Forming" Materials 18, no. 12: 2894. https://doi.org/10.3390/ma18122894
APA StyleStotz, H., Klauser, M., Rauschnabel, J., & Hauptmann, M. (2025). Influence of Moisture and Tool Temperature on the Maximum Stretch and Process Stability in High-Speed 3D Paper Forming. Materials, 18(12), 2894. https://doi.org/10.3390/ma18122894