Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
- (1)
- The bulk density and cold strength of the specimens increased significantly with rising of Zn(OH)2 content and increasing of heat-treatment temperature. Apparent porosity decreased, and PLC gradually decreased after firing at 1400–1600 °C. HMOR values also presented a notable improvement. These may be ascribed to enhanced sintering densification behavior induced by incorporating Zn(OH)2, which decreased porosity and increased bulk density; therefore, their physical properties were enhanced.
- (2)
- The enhanced intermediate-temperature strength of Zn(OH)2-containing castables after firing at 600–1000 °C was attributed to in situ formation of ZnAl2O4 and ZnCr2O4 bonding phases in the matrixes. These newly formed ZnAl2O4 and ZnCr2O4 mixed phases created a reinforcing effect that outweighs the strength reduction from CAC hydrate decomposition. In addition, the strengthening effect intensified with rising heat-treatment temperature, which could be the reason for the strength improvement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mihok, L.; Seilerova, K.; Frohlichova, M. Influence of Steel Cleanliness by Ladle Furnace Processes. Mat. Sci. 2005, 11, 320–323. [Google Scholar]
- Tan, F.-G.; Jin, S.-L.; He, Z.; Li, Y.-W. Structural Optimization and Design of Purging Plug for Improving Its Service Performance. J. Iron Steel Res. Int. 2022, 29, 628–635. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Kumar, D.S.; Sarkar, A.; Vishwanath, S.C. Optimization of Bath Mixing and Steel Cleanliness during Steel Refining through Physical and Mathematical Modeling. Sadhana-Acad. Proc. Eng. Sci. 2021, 46, 146. [Google Scholar] [CrossRef]
- Teja, V.; Sarkar, S. Wall Stresses in Dual Bottom Purged Steelmaking Ladles. Chem. Eng. Res. Des. 2018, 139, 335–345. [Google Scholar]
- Long, B.; Xu, G.; Buhr, A.; Jin, S.; Harmuth, H. Fracture Behavior and Microstructure of Refractory Materials for Steel Ladle Purging Plugs in the System Al2O3-MgO-CaO. Ceram. Int. 2017, 43, 9679–9685. [Google Scholar] [CrossRef]
- Tan, F.; He, Z.; Jin, S.; Cai, H.; Li, B.; Li, Y.; Harmuth, H. Thermomechanical Analysis of Purging Plugs by Applying Fluid–Solid Conjugate Heat Transfer Modeling. Steel Res. Int. 2019, 90, 1900213. [Google Scholar] [CrossRef]
- Tan, F.; He, Z.; Jin, S.; Li, Y.; Li, B. Study on Failure and Refining Effect of Purging Plugs with Different Slits. Refra WorldForum 2021, 23, 54–58. [Google Scholar]
- Huang, A.; Fu, L.; Gu, H.; Wu, B. Towards Slag-Resistant, Anti-Clogging and Chrome-Free Castable for Gas Purging. Ceram. Int. 2016, 42, 18674–18680. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Jia, G.; Wang, S.; Cui, J.; Guo, H.; Liu, X.; Zhang, S.; Jia, Q. Preparation of Resin Coated Alumina Aggregate and Its Effect on the Properties of Alumina-Spinel Castables for Purging Plugs. Ceram. Int. 2022, 48, 35398–35405. [Google Scholar] [CrossRef]
- Chen, H.N.; Shi, X.F.; Chen, J.; Sang, M.Y.; Ma, H.X.; Liu, X.H.; Jia, Q.L. Effects of Alumina Bubble Addition on the Properties of Corundum–Spinel Castables Containing Cr2O3. Materials 2024, 17, 3139. [Google Scholar] [CrossRef]
- Sun, X.; Yan, S.; Li, W.; Jia, Q. Effects of Calcium Hexaaluminate Aggregates on Properties of Corundum-Spinel Castables. Refractories 2015, 49, 372–375. (In Chinese) [Google Scholar]
- Liu, G.; Jin, X.; Qiu, W.; Ruan, G.; Li, Y. The Impact of Bonite Aggregate on the Properties of Lightweight Cement-Bonded Bonite–Alumina–Spinel Refractory Castables. Ceram. Int. 2016, 42, 4941–4951. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, L.; Zhang, X.; Liu, P.; Qi, H.; Wang, J.; Liu, X. Fracture Behavior and Thermal Shock Resistance of Alumina-Spinel Castables: Effect of Added Fused Zirconia–Alumina. Ceram Int. 2020, 46, 20732–20741. [Google Scholar] [CrossRef]
- Zhuo, Q.; Han, B.; Wei, J.; Miao, Z.; Zhong, H. Properties and Corrosion Behaviour of Corundum-Spinel Castables with Different Spinel Formation Methods: Role of in-Situ Spinel. Ceram. Int. 2025, 51, 7060–7068. [Google Scholar] [CrossRef]
- Feng, Y.; Ding, D.; Xiao, G.; Jin, E.; Hou, X.; Jia, X. Enhanced Thermal Shock Resistance of Corundum-Spinel Castables by Dip-Coating of Platelet-Like Lanthanum Hexa-Aluminate on Corundum Aggregates. J. Am. Ceram. Soc. 2025, 45, 117216. [Google Scholar] [CrossRef]
- Liu, J.T.; Dong, Y.F.; Qiu, X.; Ma, H.X.; Li, T.Q.; Liu, X.H.; Jia, Q.L. Strength and Microstructure Evolutions of CAC Bonded Alumina-Spinel Castables Containing Cr2O3 in the Presence of ZnO. Int. J. Appl. Ceram. Technol. 2025, 22, 15048. [Google Scholar] [CrossRef]
- Zhang, P.; Li, N.; Luan, J.; Gao, S.; Ye, G. Relationship between the Strength and Microstructure of CAC-Bonded Castables under Intermediate Temperatures. Ceram. Int. 2020, 46, 888–892. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, P.; Li, N.; Zhang, J.; Luan, J.; Ye, G.; Liao, G. Effect of CAC Content on the Strength of Castables at Temperatures between 300 and 1000 °C. Ceram. Int. 2020, 46, 14957–14963. [Google Scholar] [CrossRef]
- Borges, O.; Cardoso, A.; Moreira, M.; Klein-Gunnewiek, R.; Pandolfelli, V. Conventional and Microwave-Assisted Sintering of ZnO-Containing CAC-Bonded Alumina-Based Refractory Castables. J. Eur. Ceram. Soc. 2023, 43, 6562–6570. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Chen, L.; Ding, D.; Ye, G. Effect of Zn(OH)2 on Properties of Corundum Based Castables Bonded with Calcium Aluminate Cement. Ceram. Int. 2021, 47, 57–63. [Google Scholar] [CrossRef]
- Dong, Y.F.; Sang, M.Y.; Liu, J.T.; Qiu, X.; Liu, X.H.; Jia, Q.L. Effect of Zn(OH)2 Addition on the Properties of Corundum-Spinel Castables. In Proceedings of the 9th International Symposium on Refractories of China, Chengdu, China, 15–18 October 2024. [Google Scholar]
- Guo, L.; Wang, X.; Li, Y.; Mu, Y.; Jia, Q.; Wang, G.; Chen, L. Evolution in Properties of High Alumina Castables Containing Basic Zinc Carbonate. Ceram. Int. 2021, 47, 19019–19025. [Google Scholar] [CrossRef]
- Zhang, H.; Han, B.; Liu, Z. Preparation and Oxidation of Bauxite-Based B-Sialon-Bonded SiC Composite. Mater. Res. Bull. 2006, 41, 1681–1689. [Google Scholar] [CrossRef]
- Sun, G.S.; Zhong, X.C. Characteristics of Stress-Strain Relationship of Sintered Chinese Bauxites (DK type). J. Chin. Ceram. Soc. 1984, 12, 355–362. (In Chinese) [Google Scholar]
- Wang, X.-J.; Tian, Y.-M.; Hao, J.-Y.; Wang, Y.-Y.; Bai, P.-B. Sintering Mechanism and Properties of MgAl2O4-CaAl12O19 Composites with ZnO Addition. J. Eur. Ceram. Soc. 2020, 40, 6149–6154. [Google Scholar] [CrossRef]
- Cinibulk, M.K. Effect of Precursors and Dopants on the Synthesis and Grain Growth of Calcium Hex-Aluminate. J. Am. Ceram. Soc. 1998, 81, 3157–3168. [Google Scholar] [CrossRef]
Raw Materials | Mass Ratio (%) | |||||
---|---|---|---|---|---|---|
ZH0 | ZH1 | ZH2 | ZH3 | ZH4 | ZH5 | |
Corundum powders | 5 | 4.70 | 4.40 | 4.10 | 3.80 | 13.80 |
MgAl2O4 powders | 10 | 10 | 10 | 10 | 10 | 0 |
α-Al2O3 ultrafine | 8 | 8 | 8 | 8 | 8 | 8 |
Cr2O3 powders | 3 | 3 | 3 | 3 | 3 | 3 |
CAC | 4 | 4 | 4 | 4 | 4 | 4 |
Zn(OH)2 powders | 0 | 0.30 | 0.60 | 0.90 | 1.20 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; He, M.; Sang, M.; Qiu, X.; Xu, P.; Liu, X.; Jia, Q. Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders. Materials 2025, 18, 2777. https://doi.org/10.3390/ma18122777
Dong Y, He M, Sang M, Qiu X, Xu P, Liu X, Jia Q. Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders. Materials. 2025; 18(12):2777. https://doi.org/10.3390/ma18122777
Chicago/Turabian StyleDong, Yifan, Mantang He, Mengyang Sang, Xin Qiu, Pengyu Xu, Xinhong Liu, and Quanli Jia. 2025. "Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders" Materials 18, no. 12: 2777. https://doi.org/10.3390/ma18122777
APA StyleDong, Y., He, M., Sang, M., Qiu, X., Xu, P., Liu, X., & Jia, Q. (2025). Enhancement of Intermediate-Temperature Strength of Corundum-Spinel Castables via Incorporation of Zn(OH)2 Powders. Materials, 18(12), 2777. https://doi.org/10.3390/ma18122777