Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Subsubsection Preparation of Oriented BN/Calcium Alginate Composite in a Hydrogel Matrix
2.2.2. Preparation of Randomly Distributed BN/Calcium Alginate Composite in a Hydrogel Matrix
2.3. Characterizations
3. Results and Discussion
3.1. Structural Characterization of Aligned and Non-Aligned BN in Calcium Alginate Matrix
3.2. Thermal Conductivity of Random and Aligned BN/Calcium Alginate Composites
3.3. Oil-Bleeding and Volatilization Behavior of Calcium Alginate-Based TIMs Under Pressure and Elevated Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, D.D.L. Thermal interface materials. J. Mater. Eng. Perform. 2001, 10, 56–59. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Zhou, J.; Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 2022, 94, 025002. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Park, J.B.; Jeon, Y.P.; Hong, J.Y.; Lee, J.U. A review of polymer composites based on carbon fillers for thermal management applications: Design, preparation, and properties. Polymers 2021, 13, 1312–1326. [Google Scholar] [CrossRef]
- Xing, W.; Xu, Y.; Song, C.; Deng, T. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics. Nanomaterials 2022, 12, 3365. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Chen, L.; Tian, G.; Wan, S.; Bai, L.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics. ACS Appl. Mater. Interfaces 2019, 20, 18739–18745. [Google Scholar] [CrossRef]
- Moreno, G.; Narumanchi, S.; Feng, X.; Anschel, P.; Myers, S.; Keller, P. Electric-Drive Vehicle Power Electronics Thermal Management: Current Status, Challenges, and Future Directions. J. Electron. Packag. 2022, 144, 011004. [Google Scholar] [CrossRef]
- Huang, F.; Yue, W.; Qin, W.; Shu, D.; Sun, J.; Li, J.; Meng, D.; Wang, C. Strategy for a high thermal conductivity and low thermal resistance under compression of oriented carbon fiber with spherical alumina thermal interface material. Compos. Part A 2024, 185, 108312. [Google Scholar] [CrossRef]
- Feng, C.; Yang, L.; Yang, J.; Bai, L.; Bao, R.; Liu, Z.; Yang, M.; Lan, H.; Yang, W. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Compos. Commun. 2020, 22, 100528. [Google Scholar] [CrossRef]
- Ying, J.; Dai, W.; Yu, J.; Jiang, N.; Lin, C.; Yan, Q. Rational design of graphene structures for preparing high-performance thermal interface materials: A mini review. Sci. China-Phys. Mech. Astron. 2022, 65, 117005. [Google Scholar] [CrossRef]
- Shu, D.; Sun, J.; Huang, F.; Qin, W.; Wang, C.; Yue, W. Boron Nitride/Carbon Fiber High-Oriented Thermal Conductivity Material with Leaves-Branches Structure. Materials 2024, 17, 2183. [Google Scholar] [CrossRef]
- Chowdhury, A.S.M.R.; Rabby, M.M.; Kabir, M.; Das, P.P.; Bhandari, R.; Raihan, R.; Agonafer, D. A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials. Materials 2021, 14, 3565. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Sreekantan, S.; Devarajan, M. Influence of crosslink density on oil bleed of two-part thermal gap filler. Mater. Today Proc. 2022, 66, 3053–3056. [Google Scholar] [CrossRef]
- Wang, T.; Qin, W.; Shu, D.; Huang, F.; Sun, J.; Yue, W.; Wang, C. Effects of spherical Al2O3 grades on crack initiation of thermal conductive silicone pads under high-temperature aging. Compos. Interfaces 2023, 30, 509–527. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Zeng, X.; Zhou, B.; Sun, R. Aging Mechanism of Thermal Interface Materials Investigated by In-Situ Raman and Infrared Spectroscopy. In Proceedings of the 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 7–9 August 2024; pp. 1–4. [Google Scholar]
- Subramanian, V.; Sanchez, J.; Bautista, J.; He, Y.; Wang, J.; Das, A.; Schuldes, J.G.R.; Yazzie, K.; Dhavaleswarapu, H.K.; Malatkar, P. Mechanical Characterization of Thermal Interface Materials and Its Challenges. ASME. J. Electron. Packag. 2019, 141, 010804. [Google Scholar] [CrossRef]
- Swamy, M.C.K.; Satyanarayan. A Review of the Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. J. Electron. Mater. 2019, 48, 7623–7634. [Google Scholar] [CrossRef]
- Li, R.; Liu, Q.; Huang, l.; Yin, L.; Song, G. Properties of Thermal Interface Materials and its Impact on Thermal Dissipation and Reliability of LED Automotive Lighting. In Proceedings of the 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 23–25 October 2018; pp. 154–157. [Google Scholar]
- Zhang, J.; Feng, S.; Ma, Q. Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black. J. Appl. Polym. Sci. 2003, 89, 1548–1554. [Google Scholar] [CrossRef]
- Due, J.; Robinson, A.J. Reliability of thermal interface materials: A review. Appl. Therm. Eng. 2013, 50, 455–463. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Liu, X.; Liu, Y.; Zhu, X.; Liu, X.; You, X. A physically cross-linked sodium alginate-gelatin hydrogel with high mechanical strength. ACS Appl. Polym. Mater. 2021, 3, 3197–3205. [Google Scholar] [CrossRef]
- Yue, H.; Shang, Z.; Xu, P.; Feng, D.; Li, X. Preparation of EDTA modified chitooligosaccharide/sodium alginate/Ca2+ physical double network hydrogel by using of high-salinity oilfield produced water for adsorption of Zn2+, Ni2+ and Mn2+. Sep. Purif. Technol. 2022, 280, 119767. [Google Scholar] [CrossRef]
- Morch, Y.A.; Donati, I.; Strand, B.L.; Skjak-Braek, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006, 7, 1471–1480. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metalecarboxylate interactions in metalealginate complexes studied with FTIR spectroscopy. Carbohyd. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, Y.; Goshima, T.; Kai, T.; Kobaru, S.; Ohzuno, Y.; Nii, S.; Kiyoyama, S.; Yoshida, M.; Takei, T. Preparation of Alginate Hydrogel Beads on a Superhydrophobic Surface with Calcium Salt Powder to Enhance the Mechanical Strength and Encapsulation Efficiency of Ingredients. Materials 2024, 17, 6027. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Qin, W.; Shu, D.; Sun, J.; Li, J.; Meng, D.; Yue, W.; Wang, C. Steppingstone-inspired construction of high vertical thermal conductivity material with low carbon fiber content. Ceram. Int. 2023, 49, 32971–32978. [Google Scholar] [CrossRef]
- Wu, J.; Song, X.; Gong, Y.; Yang, W.; Chen, L.; He, S.; Lin, J.; Bian, X. Analysis of the heat conduction mechanism for Al2O3/Silicone rubber composite material with FEM based on experiment observations. Compos. Sci. Technol. 2021, 210, 108809. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Wang, Y.; Dai, W.; Li, L.; Chen, Y.; Kong, X.; Xu, K.; Yang, R.; Gong, P.; et al. Ultrahigh thermal conductive polymer composites by the 3D printing induced vertical alignment of carbon fiber. J. Mater. Chem. A 2023, 11, 10971–10983. [Google Scholar] [CrossRef]
- Niu, H.; Guo, H.; Kang, L.; Ren, L.; Lv, R.; Bai, S. Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites. Nano-Micro Lett. 2022, 14, 153. [Google Scholar] [CrossRef]
Material | Density (g·cm−3) | Thermal Conductivity (W·m−1·K−1) | Specific Heat Capacity (J·g−1·K−1) |
---|---|---|---|
Ca-alginate | 2.12 | 0.51 | 2.0 |
BN | 2.26 | 56.94 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Shu, D.; Huang, F.; Qin, W.; Yue, W.; Wang, C. Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials. Materials 2025, 18, 2757. https://doi.org/10.3390/ma18122757
Sun J, Shu D, Huang F, Qin W, Yue W, Wang C. Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials. Materials. 2025; 18(12):2757. https://doi.org/10.3390/ma18122757
Chicago/Turabian StyleSun, Jiachen, Dengfeng Shu, Fei Huang, Wenbo Qin, Wen Yue, and Chengbiao Wang. 2025. "Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials" Materials 18, no. 12: 2757. https://doi.org/10.3390/ma18122757
APA StyleSun, J., Shu, D., Huang, F., Qin, W., Yue, W., & Wang, C. (2025). Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials. Materials, 18(12), 2757. https://doi.org/10.3390/ma18122757