Evaluation of Oral Mucosa Elastomers for a 3D Oral Simulation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Specimen Preparation
2.2.2. Tensile Test
2.2.3. Shore Hardness Test
2.2.4. Compression Test
2.2.5. Wettability Test
2.2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.J.E.; Chen, S.; Waddell, J.N. Investigation of dental elastomers as oral mucosa simulant materials. Clin. Exp. Dent. Res. 2021, 7, 754–762. [Google Scholar] [CrossRef]
- Mendes, J.; Mendes, J.M.; Barreiros, P.; Aroso, C.; Silva, A.S. Retention Capacity of Original Denture Adhesives and White Brands for Conventional Complete Dentures: An In Vitro Study. Polymers 2022, 14, 1749. [Google Scholar] [CrossRef]
- Chen, J.; Ahmad, R.; Li, W.; Swain, M.; Li, Q. Biomechanics of oral mucosa. J. R. Soc. Interface 2015, 12, 20150325. [Google Scholar] [CrossRef]
- Ikemura, N.; Sato, Y.; Furuya, J.; Shimodaira, O.; Takeda, K.; Kakuta, T.; Yamane, K.; Kitagawa, N. Changes in denture retention with denture adhesives and oral moisturizers for the oral cavity: An in vitro study. BMC Oral Health 2021, 21, 438. [Google Scholar] [CrossRef]
- Ajaj Al-Kordy, N.M.T.; Al-Saadi, M.H. Finite Element Study of Stress Distribution with Tooth-Supported Mandibular Overdenture Retained by Ball Attachments or Resilient Telescopic Crowns. Eur. J. Dent. 2023, 17, 539–547. [Google Scholar] [CrossRef]
- Mutahar, M.; Al Ahmari, N.M.; Alqahtani, S.M.; Gadah, T.S.; Alshehri, A.H.; Adawi, H.A.; Shariff, M.; Al-Sanabani, F.A.; Al Moaleem, M.M. Comparative Analysis of Properties in Chairside Silicone Denture Liners versus Heat-Cured Molloplast-B: An In-Depth In Vitro Evaluation. Med. Sci. Monit. 2023, 29, e941793. [Google Scholar] [CrossRef]
- Choi, J.J.E.; Zwirner, J.; Ramani, R.S.; Ma, S.; Hussaini, H.M.; Waddell, J.N.; Hammer, N. Mechanical properties of human oral mucosa tissues are site dependent: A combined biomechanical, histological and ultrastructural approach. Clin. Exp. Dent. Res. 2020, 6, 602–611. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, F.Y.; Wu, G.H.; Zhang, W.; Yin, J. Measurement of mucosal thickness in denture-bearing area of edentulous mandible. Chin. Med. J. 2015, 128, 342–347. [Google Scholar] [CrossRef]
- Kawasaki, T.; Takayama, Y.; Yamada, T.; Notani, K. Relationship between the stress distribution and the shape of the alveolar residual ridge—Three-dimensional behaviour of a lower complete denture. J. Oral. Rehabil. 2001, 28, 950–957. [Google Scholar]
- Johnson, A.; Al-Kaisy, N.; Miller, C.; Martin, N. The Effect of denture design and fixatives on the retention of mandibular complete dentures tested on a novel in-vitro edentulous model. Eur. J. Prosthodont. Rest. Dent. 2013, 21, 64–74. [Google Scholar]
- Al-Kaisy, N. Creation and Validation of an In-Vitro Model of an Edentulous Mandibular Ridge for Testing Mandibular Complete Denture Retention; University of Sheffield: Sheffield, UK, 2011. [Google Scholar]
- Mei, H.; White, D.; Busscher, H. On the wettability of soft tissues in the human oral cavity. Arch. Oral. Biol. 2004, 49, 671–673. [Google Scholar]
- ISO 527-3:2018; Plastics-Determination of Tensile Properties-Part 3: Test Conditions for Films and Sheets. ISO: London, UK, 2018.
- ISO 527-1:2019; Plastics-Determination of Tensile Properties-Part 1. ISO: London, UK, 2019.
- ISO 868:2003; Plastics and Ebonite-Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: London, UK, 2003.
- ISO 604:2002; Plastics—Determination of Compressive Properties. ISO: London, UK, 2002.
- ISO 19403-2:2017; Paints and Varnishes—Wettability—Part 2: Determination of the Surface Free Energy of Solid Surfaces by Measuring the Contact Angle. ISO: London, UK, 2017.
- Ruiz-Cabello, F.J.M.; Rodríguez-Valverde, M.A.; Cabrerizo-Vílchez, M.A. Equilibrium contact angle or the most-stable contact angle? Adv. Colloid Interface Sci. 2014, 206, 320–327. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.4.1); R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates, Publishers: Mahwah, NJ, USA, 1988. [Google Scholar]
- Jin, Y.H.J. The power of the chi-squared test and Fisher’s exact test under different sampling schemes. BMC Med. Res. Methodol. 2020, 20, 1–9. [Google Scholar]
- Lacoste-Ferré, M.H.; Demont, P.; Dandurand, J.; Dantras, E.; Duran, D.; Lacabanne, C. Dynamic mechanical properties of oral mucosa: Comparison with polymeric soft denture liners. J. Mech. Behav. Biomed. Mater. 2011, 4, 269–274. [Google Scholar] [CrossRef]
- Martins, F.; Reis, J.; Barbero Navarro, I.; Maurício, P. Dimensional stability of a preliminary vinyl polysiloxane impression material. Dent. J. 2019, 7, 81. [Google Scholar] [CrossRef]
- Barakat, M.M.; Khan, N.S.; Araby, Y.A.; Zakaria, W.M. Comparative evaluation of dimensional accuracy and tear strength of vinyl siloxanether and polyether impression materials: An in vitro study. World J. Dent. 2020, 11, 457–461. [Google Scholar] [CrossRef]
- Owen, M.J. Silicone Surface Fundamentals. Macromol. Rapid Commun. 2021, 42, 2000360. [Google Scholar] [CrossRef]
- Hatamleh, M.M.; Watts, D.C. Mechanical properties and bonding of maxillofacial silicone elastomers. Dent. Mater. 2010, 26, 185–191. [Google Scholar] [CrossRef]
- Wieckiewicz, M.; Grychowska, N.; Zietek, M.; Wieckiewicz, W. Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials. Biomed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Yao, H.; Xie, Z.; Huang, C.; Yuan, Q.; Yu, Z. Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties. Constr. Build. Mater. 2021, 299, 124255. [Google Scholar] [CrossRef]
- Ranc, H.; Elkhyat, A.; Servais, C.; Mac-Mary, S.; Launay, B.; Humbert, P. Friction coefficient and wettability of oral mucosal tissue: Changes induced by a salivary layer. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 155–161. [Google Scholar] [CrossRef]
- Goktas, S.; Dmytryk, J.J.; McFetridge, P.S. Biomechanical Behavior of Oral Soft Tissues. J. Periodontol. 2011, 82, 1178–1186. [Google Scholar] [CrossRef]
- Mese, A.; Guzel, K.G. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. J. Prosthet. Dent. 2008, 99, 153–159. [Google Scholar] [CrossRef]
- Dederichs, M.; Fahmy, M.D.; Kuepper, H.; Guentsch, A. Comparison of Gingival Retraction Materials Using a New Gingival Sulcus Model. J. Prosthodontics. 2019, 28, 784–789. [Google Scholar] [CrossRef]
- Klausner, M.; Handa, Y.; Aizawa, S. In vitro three-dimensional organotypic culture models of the oral mucosa. Vitr. Cell. Dev. Biol. Anim. 2021, 57, 148–159. [Google Scholar] [CrossRef]
Material Type | Material Name | Brand | Composition | Curing Type |
---|---|---|---|---|
Soft denture liner | Molloplast® B (MB) | Dentax, GmbH, Ettlingen, Germany | Dibenzoyl peroxide; benzoyl peroxide; dodecaemthylcyclohexasiloxane | Heat cure |
Soft denture liner | Ufi Gel® SC (UFI) | VOCO GmbH, Cuxhaven, Germany | Vinyl polysiloxane | Self-cure |
Impression material | EXA’lenceTM Light Body (EXA) | GC Corporation, Leuven, Belgium | Vinyl polyether silicone | Self-cure |
Elastomer | E-Modulus (Young’s Modulus) |
---|---|
Molloplast® B (MB) | 1.5 (±0.17) MPa |
Ufi Gel® SC (UFI) | 1.1 (±0.02) MPa |
EXA’lenceTM Light Body (EXA) | 1.3 (±0.16) MPa |
Ufi Gel® SC | EXA’lenceTM | Molloplast® B | F-Test | Tukey Pairwise Comparisons | |
---|---|---|---|---|---|
Test time (s) | 9.98 ± 0.03 | 9.98 ± 0.03 | 9.97 ± 0.03 | F(2,12) = 0.29, p = 0.75, η2p = 0.05 | - |
Drop angle mean (°) | 102.51 ± 6.44 | 36.98 ± 6.14 | 101.50 ± 5.54 | F(2,12) = 192.40, p < 0.001 ***, η2p = 0.97 | UFI vs. EXA (p < 0.001 ***) MB vs. EXA (p < 0.001 ***) UFI vs. MB (p = 0.96) |
Drop baseline (mm) | 2.63 ± 0.08 | 4.59 ± 0.27 | 2.64 ± 0.07 | F(2,12) = 224.50, p < 0.001 ***, η2p = 0.97 | UFI vs. EXA (p < 0.001 ***) MB vs. EXA (p < 0.001 ***) UFI vs. MB (p = 0.99) |
Tensile E-modulus (MPa) | 1.07 ± 0.02 | 1.35 ± 0.16 | 1.53 ± 0.17 | F(2,12) = 14.81, p < 0.001 ***, η2p = 0.71 | UFI vs. EXA (p = 0.02 *) UFI vs. MB (p < 0.001 ***) MB vs. EXA (p = 0.12) |
Angle ≤ 90° | Angle > 90° | Fisher’s Test | |
---|---|---|---|
Ufi Gel® SC | 0 (0%) | 5 (50.0%) | p < 0.001 *** |
EXA’lenceTM Light Body | 5 (50.0%) | 0 (0%) | |
Molloplast® B | 0 (0%) | 5 (50.0%) |
Target 72° | Target 82° | |
---|---|---|
Ufi Gel SC | t(4) = 10.59 (p < 0.001 ***) | t(4) = 7.12 (p = 0.002 **) |
EXA’lenceTM Light Body | t(4) = −12.75 (p < 0.001 ***) | t(4) = −16.36 (p < 0.001 ***) |
Molloplast® B | t(4) = 11.91 (p < 0.001 ***) | t(4) = 7.87 (p = 0.001 **) |
Mean (SD) | Mean Difference to Target of 2.72 MPa | Target of 2.72 MPa | |
---|---|---|---|
Ufi Gel SC | 2.26 (±0.15) | +0.46 | t(4) = −6.71 (p = 0.003 **) |
EXA’lence | 4.68 (±0.19) | −1.96 | t(4) = −22.82 (p < 0.001 ***) |
Molloplast B | 2.71 (±0.13) | +0.01 | t(4) = −0.20 (p = 0.850) |
Ufi Gel SC | EXA’lence | Molloplast B | |
---|---|---|---|
Test 1 | 51 | 64 | 68 |
Test 2 | 50 | 63 | 69 |
Test 3 | 50 | 62 | 70 |
Test 4 | 52 | 64 | 72 |
Test 5 | 51 | 62 | 69 |
Mean (SD) | 50.8 (±0.7) | 63 (±0.9) | 69.6 (±1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, J.; Mendes, J.M.; Coelho, L.; Aroso, C.; Brizuela-Velasco, A.; Esteves, J.L.; Manzanares-Céspedes, M.C. Evaluation of Oral Mucosa Elastomers for a 3D Oral Simulation Model. Materials 2025, 18, 2490. https://doi.org/10.3390/ma18112490
Mendes J, Mendes JM, Coelho L, Aroso C, Brizuela-Velasco A, Esteves JL, Manzanares-Céspedes MC. Evaluation of Oral Mucosa Elastomers for a 3D Oral Simulation Model. Materials. 2025; 18(11):2490. https://doi.org/10.3390/ma18112490
Chicago/Turabian StyleMendes, Joana, José Manuel Mendes, Lara Coelho, Carlos Aroso, Aritza Brizuela-Velasco, José L. Esteves, and Maria Cristina Manzanares-Céspedes. 2025. "Evaluation of Oral Mucosa Elastomers for a 3D Oral Simulation Model" Materials 18, no. 11: 2490. https://doi.org/10.3390/ma18112490
APA StyleMendes, J., Mendes, J. M., Coelho, L., Aroso, C., Brizuela-Velasco, A., Esteves, J. L., & Manzanares-Céspedes, M. C. (2025). Evaluation of Oral Mucosa Elastomers for a 3D Oral Simulation Model. Materials, 18(11), 2490. https://doi.org/10.3390/ma18112490