Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of ZSM-5@Celgard Separator
- (1)
- Activation/Water Removal Process of Zeolite Powder
- (2)
- Fabrication of ZSM-5@Celgard Separator
- (3)
- Pressing Process of Prepared ZSM-5@Celgard Separator
2.2. Electrolytes and Electrode Preparation
2.3. Cell Assembly and Electrochemical Measurement
2.4. Materials Characterizations
2.5. Molecular Dynamics (MD) Simulations
3. Results and Discussion
3.1. The Solvation Structures in ZSM Electrolytes
3.2. Electrochemical Performance of the Electrolytes
3.3. Interfacial Properties of ZSM Electrolytes
3.4. Performance of LFP||Li Full Batteries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Yang, H.X.; Ai, X.P. Routes to Electrochemically Stable Sulfur Cathodes for Practical Li-S Batteries. Adv. Mater. 2023, 6, 2305038. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Yamaguchi, T.; Matsumoto, S.; Hoshikawa, H.; Kumagai, T.; Okamoto, N.L.; Ichitsubo, T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 2020, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.H.; Zhou, J.Q.; Wang, Z.K.; Zhu, P.; Cao, Y.F.; Zheng, Y.W.; Zhou, X.; Yan, C.L.; Qian, T. Advances and Prospects in Improving the Utilization Efficiency of Lithium for High Energy Density Lithium Batteries. Adv. Funct. Mater. 2023, 33, 2302055. [Google Scholar] [CrossRef]
- Qian, S.S.; Chen, H.; Zheng, M.T.; Zhu, Y.X.; Xing, C.; Tian, Y.H.; Yang, P.; Wu, Z.Z.; Zhang, S.Q. Complementary combination of lithium protection strategies for robust and longevous lithium metal batteries. Energy Storage Mater. 2023, 57, 229–248. [Google Scholar] [CrossRef]
- Kim, S.; Park, G.; Lee, S.J.; Seo, S.; Ryu, K.; Kim, C.H.; Choi, J.W. Lithium-Metal Batteries: From Fundamental Research to Industrialization. Adv. Mater. 2023, 35, 2206625. [Google Scholar] [CrossRef]
- Liu, J.; Bao, Z.N.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.Y.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Li, L.; Basu, S.; Wang, Y.P.; Chen, Z.Z.; Hundekar, P.; Wang, B.W.; Shi, J.; Shi, Y.F.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Liu, B.; Shen, Y.H.; Wu, J.K.; Zhao, Z.Q.; Zhong, C.; Hu, W.B. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Adv. Sci. 2021, 8, 2101111. [Google Scholar] [CrossRef]
- Tatara, R.; Yu, Y.; Karayaylali, P.; Chan, A.K.; Zhang, Y.R.; Jung, R.; Maglia, F.; Giordano, L.; Shao-Horn, Y. Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. ACS Appl. Mater. Interfaces 2019, 11, 34973–34988. [Google Scholar] [CrossRef]
- Liang, H.M.; Wang, L.; Sheng, L.; Xu, H.; Song, Y.Z.; He, X.M. Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochem. Energy Rev. 2022, 5, 54. [Google Scholar] [CrossRef]
- Xue, W.J.; Shi, Z.; Huang, M.J.; Feng, S.T.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.Y.; Zhang, W.X.; et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 2020, 13, 212–220. [Google Scholar] [CrossRef]
- Shen, X.W.; Li, Y.T.; Qian, T.; Liu, J.; Zhou, J.Q.; Yan, C.L.; Goodenough, J.B. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 2019, 10, 900. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhong, Y.R.; Wu, Z.S.; Wang, B.; Liang, S.Q.; Wang, H.L. Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angew. Chem.-Int. Edit. 2020, 59, 7797–7802. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.J.; He, P.; Zhou, H.S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204. [Google Scholar] [CrossRef]
- Dou, Q.Y.; Lei, S.L.; Wang, D.W.; Zhang, Q.N.; Xiao, D.W.; Guo, H.W.; Wang, A.P.; Yang, H.; Li, Y.L.; Shi, S.Q.; et al. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 2018, 11, 3212–3219. [Google Scholar] [CrossRef]
- Ding, J.F.; Zhang, Y.T.; Xu, R.; Zhang, R.; Xiao, Y.; Zhang, S.; Bi, C.X.; Tang, C.; Xiang, R.; Park, H.S.; et al. Review on lithium metal anodes towards high energy density batteries. Green Energy Environ. 2023, 8, 1509–1530. [Google Scholar] [CrossRef]
- Huang, Z.J.; Lai, J.C.; Liao, S.L.; Yu, Z.; Chen, Y.L.; Yu, W.L.; Gong, H.X.; Gao, X.; Yang, Y.F.; Qin, J.; et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes. Nat. Energy 2023, 8, 577–585. [Google Scholar] [CrossRef]
- Meng, Y.S.; Srinivasan, V.; Xu, K. Designing better electrolytes. Science 2022, 378, abq3750. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Fan, X.L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.Y.; Liou, S.C.; et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 1191. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.H.; Ren, X.D.; Cao, R.G.; Engelhard, M.H.; Liu, Y.Z.; Hu, D.H.; Mei, D.H.; Zheng, J.M.; Zhao, W.G.; Li, Q.Y.; et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746. [Google Scholar] [CrossRef]
- Fan, X.L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.Y.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.J.; Xu, K.; et al. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. Chem 2018, 4, 174–185. [Google Scholar] [CrossRef]
- Xu, J.J.; Wang, C.S. Perspective-Electrolyte Design for Aqueous Batteries: From Ultra-High Concentration to Low Concentration. J. Electrochem. Soc. 2022, 169, 030530. [Google Scholar] [CrossRef]
- Wang, J.H.; Yamada, Y.; Sodeyama, K.; Chiang, C.H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032. [Google Scholar] [CrossRef]
- Suo, L.M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.L.; Luo, C.; Wang, C.S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943. [Google Scholar] [CrossRef]
- Wu, Z.C.; Li, R.H.; Zhang, S.Q.; Lv, L.; Deng, T.; Zhang, H.; Zhang, R.X.; Liu, J.J.; Ding, S.H.; Fan, L.W.; et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 2023, 9, 650–664. [Google Scholar] [CrossRef]
- Chen, J.E.; Zhang, H.; Fang, M.M.; Ke, C.M.; Liu, S.; Wang, J.H. Design of Localized High-Concentration Electrolytes via Donor Number. ACS Energy Lett. 2023, 8, 1723–1734. [Google Scholar] [CrossRef]
- Suo, L.M.; Xue, W.J.; Gobet, M.; Greenbaum, S.G.; Wang, C.; Chen, Y.M.; Yang, W.L.; Li, Y.X.; Li, J. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 2018, 115, 1156–1161. [Google Scholar] [CrossRef]
- Qiao, Y.; Yi, J.; Guo, S.H.; Sun, Y.; Wu, S.C.; Liu, X.Z.; Yang, S.X.; He, P.; Zhou, H.S. Li2CO3-free Li-O2/CO2 battery with peroxide discharge product. Energy Environ. Sci. 2018, 11, 1211–1217. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, A. Review-Superconcentrated Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2015, 162, A2406–A2423. [Google Scholar] [CrossRef]
- Yamada, Y.; Wang, J.H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Chang, J.; Wang, L.G.; Li, J.W.; Wang, C.Y.; Wang, R.; Shi, G.L.; Yu, K.; Huang, W.; Zheng, H.H.; et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 1081. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yang, Z.L.; Zhang, X.X.; Liu, Y.C.; Hu, G.L.; Chen, S.J.; Zhang, Y.N. Activating ultra-low temperature Li-metal batteries by tetrahydrofuran-based localized saturated electrolyte. Energy Storage Mater. 2023, 58, 184–194. [Google Scholar] [CrossRef]
- Chen, S.R.; Zheng, J.M.; Mei, D.H.; Han, K.S.; Engelhard, M.H.; Zhao, W.G.; Xu, W.; Liu, J.; Zhang, J.G. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. Adv. Mater. 2018, 30, 1706102. [Google Scholar] [CrossRef]
- Jia, H.; Kim, J.M.; Gao, P.Y.; Xu, Y.B.; Engelhard, M.H.; Matthews, B.E.; Wang, C.M.; Xu, W. A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High-Concentration Electrolytes over Electrochemical Performance of Lithium-Ion Batteries. Angew. Chem.-Int. Edit. 2023, 62, e202207927. [Google Scholar] [CrossRef]
- Li, Z.; Rao, H.; Atwi, R.; Sivakumar, B.M.; Gwalani, B.; Gray, S.; Han, K.S.; Everett, T.A.; Ajantiwalay, T.A.; Murugesan, V.; et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 868. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Ni, Y.X.; Wang, Q.R.; Zhang, W.J.; Jin, S.; Zheng, S.B.; Yang, X.; Hou, Y.P.; Tao, Z.L.; Chen, J. Optimize Lithium Deposition at Low Temperature by Weakly Solvating Power Solvent. Angew. Chem.-Int. Edit. 2022, 61, e202207927. [Google Scholar] [CrossRef]
- Zhang, J.M.; Li, Q.P.; Zeng, Y.P.; Tang, Z.; Sun, D.; Huang, D.; Tang, Y.G.; Wang, H.Y. Weakly Solvating Cyclic Ether Electrolyte for High-Voltage Lithium Metal Batteries. ACS Energy Lett. 2023, 8, 1752. [Google Scholar] [CrossRef]
- Tan, L.J.; Chen, S.Q.; Chen, Y.W.; Fan, J.J.; Ruan, D.G.; Nian, Q.S.; Chen, L.; Jiao, S.H.; Ren, X.D. Intrinsic Nonflammable Ether Electrolytes for Ultrahigh-Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. Angew. Chem.-Int. Edit. 2022, 61, e202203693. [Google Scholar] [CrossRef]
- Yu, Z.; Rudnicki, P.E.; Zhang, Z.W.; Huang, Z.J.; Celik, H.; Oyakhire, S.T.; Chen, Y.L.; Kong, X.; Kim, S.C.; Xiao, X.; et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106. [Google Scholar] [CrossRef]
- Zhu, J.B.; Bie, Z.; Cai, X.X.; Jiao, Z.Y.; Wang, Z.T.; Tao, J.C.; Song, W.X.; Fan, H.J. A Molecular-Sieve Electrolyte Membrane enables Separator-Free Zinc Batteries with Ultralong Cycle Life. Adv. Mater. 2022, 34, 9. [Google Scholar] [CrossRef]
- Cai, Y.K.; Lin, S.H.; Xia, Y.; Hou, Q.M.; Lu, Y.Q.; Cao, H.Y.; Wang, Y.X.; Huang, K.; Xu, Z. ZSM-5 zeolite incorporated flow battery membranes with regulated pore channels for high proton conduction. AIChE J. 2024, 70, 6. [Google Scholar] [CrossRef]
- Chen, G.R.; She, P.H.; Han, J.; Li, J.Y.; Tian, G.; Sun, Y.B.; Gao, Y.J.; Yang, G.J.; Diao, Z.H.; Guan, B.Y.; et al. Structurally Engineering Multi-Shell Hollow Zeolite Single Crystals via Defect-Directed Oriented-Kinetics Transformation and Their Heterostructures for Hydrodeoxygenation Reaction. Angew. Chem.-Int. Edit. 2025, 11, e202424690. [Google Scholar] [CrossRef]
- Yan, C.; Li, H.R.; Chen, X.; Zhang, X.Q.; Cheng, X.B.; Xu, R.; Huang, J.Q.; Zhang, Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429. [Google Scholar] [CrossRef]
- Bai, P.; Li, J.; Brushett, F.R.; Bazant, M.Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229. [Google Scholar] [CrossRef]
- Fawdon, J.; Ihli, J.; La Mantia, F.; Pasta, M. Characterising lithium-ion electrolytes via operando Raman microspectroscopy. Nat. Commun. 2021, 12, 4053. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Park, J.; Lee, K.; Zhao, Y.; Zhou, T.H.; Park, G.; Jeong, M.G.; Choi, M.; Yoo, D.J.; Jung, H.G.; et al. Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries. ACS Energy Lett. 2023, 8, 179–188. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.Q.; Yao, N.; Yao, Y.X.; Hou, L.P.; Chen, X.; Zhou, M.Y.; Huang, J.Q.; Zhang, Q. Stable Anion-Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angew. Chem.-Int. Edit. 2021, 60, 22683–22687. [Google Scholar] [CrossRef]
- Zhang, S.M.; Yang, G.J.; Liu, Z.P.; Li, X.Y.; Wang, X.F.; Chen, R.J.; Wu, F.; Wang, Z.X.; Chen, L.Q. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Nano Lett. 2021, 21, 3310–3317. [Google Scholar] [CrossRef]
- Gao, Y.; Rojas, T.; Wang, K.; Liu, S.; Wang, D.W.; Chen, T.H.; Wang, H.Y.; Ngo, A.T.; Wang, D.H. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 2020, 5, 534–542. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Gu, Z.Y.; Liu, X.Y.; Wang, Z.Q.; Wen, J.Y.; Wu, X.L.; Luo, W.; Huang, Y.H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2021, 14, 524. [Google Scholar] [CrossRef]
- Jin, C.B.; Liu, T.F.; Sheng, O.W.; Li, M.; Liu, T.C.; Yuan, Y.F.; Nai, J.W.; Ju, Z.J.; Zhang, W.K.; Liu, Y.J.; et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 2021, 6, 378–387. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Huang, L.Q.; Luo, W.; Wang, H.T.; Dai, Y.M.; Liu, X.Y.; Wang, Z.Q.; Zheng, H.H.; Huang, Y.H. Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Lett. 2021, 6, 2054–2063. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, X.; Hou, L.P.; Li, B.Q.; Cheng, X.B.; Huang, J.Q.; Zhang, Q. Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Lett. 2019, 4, 411–416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, H.; Liu, H.; Shan, D.; He, X.; Kong, L.; Wang, J.; Li, Q.; Yang, J. Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries. Materials 2025, 18, 2415. https://doi.org/10.3390/ma18112415
Li Y, Huang H, Liu H, Shan D, He X, Kong L, Wang J, Li Q, Yang J. Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries. Materials. 2025; 18(11):2415. https://doi.org/10.3390/ma18112415
Chicago/Turabian StyleLi, Yi, Hongwei Huang, Haojun Liu, Dedong Shan, Xuezhong He, Lingkai Kong, Jing Wang, Qian Li, and Jian Yang. 2025. "Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries" Materials 18, no. 11: 2415. https://doi.org/10.3390/ma18112415
APA StyleLi, Y., Huang, H., Liu, H., Shan, D., He, X., Kong, L., Wang, J., Li, Q., & Yang, J. (2025). Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries. Materials, 18(11), 2415. https://doi.org/10.3390/ma18112415