High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates
Abstract
:1. Introduction
2. Experimental Section
2.1. Film Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Li, W.; Tang, X.; Shen, Z.; Wang, K.; Zhang, Y.; Zhang, S.; Jiang, Y.; Guo, X. Enhancement of energy storage density and efficiency of PbHfO3 doped with La antiferroelectric thin films. Acs Appl. Energy Mater. 2022, 6, 120–126. [Google Scholar] [CrossRef]
- Lee, H.J.; Won, S.S.; Cho, K.H.; Han, C.K.; Mostovych, N.; Kingon, A.I.; Kim, S.H.; Lee, H.Y. Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films. Appl. Phys. Lett. 2018, 112, 092901. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Shi, Z.; Zhang, B.; Zhang, C.; Chi, Q. Tunable polarization-drived high energy storage performances in flexible PbZrO3 films by growing Al2O3 nanolayers. J. Adv. Ceram. 2023, 12, 2123–2133. [Google Scholar] [CrossRef]
- Geng, W.; Qiao, X.; Zhao, C.; Zheng, D.; Li, Y.; Zhang, L.; Bi, K.; Yang, Y.; Sun, Y.; Chou, X. Temperature dependence of ferroelectric property and leakage mechanism in Mn-doped Pb(Zr0.3Ti0.7)O3 films. Ceram. Int. 2021, 47, 24047–24052. [Google Scholar] [CrossRef]
- Guo, X.; Ge, J.; Ponchel, F.; Rémiens, D.; Chen, Y.; Dong, X.; Wang, G. Effect of Sn substitution on the energy storage properties of high (001)-oriented PbZrO3 thin films. Thin Solid Film. 2017, 632, 93–96. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Zhang, B.; Zhang, C.; Chi, Q. High energy storage performance for flexible PbZrO3 thin films by seed layer engineering. Ceram. Int. 2022, 48, 23840–23848. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Z.; Yin, C.; Zhang, C.; Chi, Q. Superior energy storage performance of all-inorganic flexible antiferroelectric-insulator multilayer thin films. Ceram. Int. 2023, 49, 5808–5814. [Google Scholar] [CrossRef]
- Hoffmann, M.; Gui, M.; Slesazeck, S.; Fontanini, R.; Segatto, M.; Esseni, D.; Mikolajick, T. Intrinsic nature of negative capacitance in multidomain Hf0.5Zr0.5O2-based ferroelectric/dielectric heterostructures. Adv. Funct. Mater. 2021, 32, 2108494. [Google Scholar] [CrossRef]
- Liu, C.; Lin, S.X.; Qin, M.H.; Lu, X.B.; Gao, X.S.; Zeng, M.; Li, Q.L.; Liu, J.M. Energy storage and polarization switching kinetics of (001)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. Appl. Phys. Lett. 2016, 108, 112903. [Google Scholar] [CrossRef]
- Chi, Q.; Dong, B.; Yin, C.; Zhang, X.; Sun, S.; Zhang, C.; Zhang, Y.; Zhang, Y.; Zhang, T. Improved energy storage performance of NBTM/STM multilayer films via designing the stacking order. J. Mater. Chem. C 2024, 12, 13927–13935. [Google Scholar] [CrossRef]
- Lu, R.; Wang, J.; Duan, T.; Hu, T.-Y.; Hu, G.; Liu, Y.; Fu, W.; Han, Q.; Lu, Y.; Lu, L.; et al. Metadielectrics for high-temperature energy storage capacitors. Nat. Commun. 2024, 15, 6596. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Houwman, E.P.; Birkhölzer, Y.A.; Vu, H.N.; Koster, G.; Rijnders, G. Toward design rules for multilayer ferroelectric energy storage capacitors-A study based on lead-free and relaxor-ferroelectric/paraelectric multilayer devices. Adv. Mater. 2024, 36, 2402070. [Google Scholar] [CrossRef]
- Pan, H.; Zhu, M.; Banyas, E.; Alaerts, L.; Acharya, M.; Zhang, H.; Kim, J.; Chen, X.; Huang, X.; Xu, M.; et al. Clamping enables enhanced electromechanical responses in antiferroelectric thin films. Nat. Mater. 2024, 23, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tsai, B.K.; Zhang, Y.; Xu, K.; Barnard, J.P.; Hu, Z.; Zhang, X.; Wang, H. Van der waals epitaxy of bismuth-based multiferroic layered supercell oxide thin films integrated on flexible mica substrate. Small Sci. 2024, 4, 2300244. [Google Scholar] [CrossRef]
- Yu, Z.; Fan, N.; Fu, Z.; He, B.; Yan, S.; Cai, H.; Chen, X.; Zhang, L.; Zhang, Y.; Xu, B.; et al. Room-temperature stabilizing strongly competing ferrielectric and antiferroelectric phases in PbZrO3 by strain-mediated phase separation. Nat. Commun. 2024, 15, 3438. [Google Scholar] [CrossRef]
- Zhang, T.; Si, Y.; Deng, S.; Wang, H.; Wang, T.; Shao, J.; Li, Y.; Li, X.; Chen, Q.; Liu, C.; et al. Superior energy storage performance in antiferroelectric epitaxial thin films via structural heterogeneity and orientation control. Adv. Funct. Mater. 2024, 34, 2311160. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Zhang, C.; Zhang, Y.; Jeong, C.K.; Hwang, G.T.; Chi, Q. Flexible mica films coated by magnetron sputtered insulating layers for high-temperature capacitive energy storage. Susmat 2024, 4, e228. [Google Scholar] [CrossRef]
- Chen, B.; Yu, H.; Shao, Y.; Bai, Y.; Hu, R.; Zeng, Z.; Zhang, F.; Wang, Z.J. A novel way to prepare PbZrO3 nanocomposite films for increasing electrical properties and energy storage performance. J. Alloys Compd. 2023, 960, 170873. [Google Scholar] [CrossRef]
- Cai, H.; Yan, S.; Zhou, M.; Liu, N.; Ye, J.; Li, S.; Cao, F.; Dong, X.; Wang, G. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring. J. Eur. Ceram. Soc. 2019, 39, 4761–4769. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Hao, X. Ultra-high energy-storage density and fast discharge speed of (Pb0.98-xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J. Mater. Chem. A 2019, 7, 11858–11866. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, B.; Koritala, R.E.; Balachandran, U. Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 2014, 104, 263902. [Google Scholar] [CrossRef]
- Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 2022, 32, 2111776. [Google Scholar] [CrossRef]
- Ye, M.; Sun, Q.; Chen, X.; Jiang, Z.; Wang, F. Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films. J. Am. Ceram. Soc. 2011, 94, 3234–3236. [Google Scholar] [CrossRef]
- Sa, T.; Qin, N.; Yang, G.; Bao, D. W-doping induced antiferroelectric to ferroelectric phase transition in PbZrO3 thin films prepared by chemical solution deposition. Appl. Phys. Lett. 2013, 102, 172906. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, T.; Shi, Z.; Zhang, C.; Feng, Y.; Chi, Q. High energy storage performance of all-inorganic flexible antiferroelectric-insulator multilayered thin films. Acs Appl. Mater. Interfaces 2022, 14, 28997–29006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shi, Z.; Yin, C.; Zhang, C.; Zhang, Y.; Zhang, Y.; Chen, Q.; Chi, Q. Tunable polarization-drived superior energy storage performance in PbZrO3 thin films. J. Adv. Ceram. 2023, 12, 930–942. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 2019, 29, 1807321. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, J.; Yuan, Q.; Niu, Y.; Bai, Y.; Wang, H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 2015, 27, 6658–6663. [Google Scholar] [CrossRef]
- Li, D.; Meng, X.; Zhou, E.; Chen, X.; Shen, Z.; Guo, Q.; Yao, Z.; Cao, M.; Wu, J.; Zhang, S.; et al. Ultrahigh energy density of antiferroelectric PbZrO3-based films at low electric field. Adv. Funct. Mater. 2023, 33, 2302995. [Google Scholar] [CrossRef]
- Xu, R.; Xu, Z.; Feng, Y.; Wei, X.; Tian, J.; Huang, D. Evaluation of discharge energy density of antiferroelectric ceramics for pulse capacitors. Appl. Phys. Lett. 2016, 109, 032903. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, L.; Yang, Z.; Liu, L.; Zhu, F.; Wang, H.; Cheng, Y.-Y.; Huang, Y.; Li, J.-F. Ultra-thin multilayer films for enhanced energy storage performance. Nano Energy 2024, 121, 109271. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Zhuo, F.; Xu, C.; Zhang, G.; Liu, L.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Vu, H.N.; Nguyen, M.D. High-performance energy storage and breakdown strength of low-temperature laser-deposited relaxor PLZT thin films on flexible Ti-foils. J. Alloys Compd. 2019, 802, 422–429. [Google Scholar] [CrossRef]
- Zhang, T.; Li, W.; Zhao, Y.; Yu, Y.; Fei, W. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv. Funct. Mater. 2018, 28, 1706211. [Google Scholar] [CrossRef]
- Li, Q.; Yao, F.-Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Li, W.; Cao, Z.; Zhang, X. Thermal analysis of the solid rotor permanent magnet Ssynchronous motors with air-cooled hybrid ventilation systems. Ieee Trans. Ind. Electron. 2022, 69, 1146–1156. [Google Scholar] [CrossRef]
- Li, W.; Tang, H.; Luo, S.; Yan, X.; Wu, Z. Comparative analysis of the operating performance, magnetic field, and temperature rise of the three-phase permanent magnet synchronous motor with or without fault-tolerant control under single-phase open-circuit fault. Iet Electr. Power Appl. 2021, 15, 861–872. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, Y.; Chen, X.; Dong, X.; Nie, H.; Cao, F.; Wang, G. Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics. J. Alloys Compd. 2017, 691, 721–725. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Han, K.; Li, Q.; Chanthad, C.; Gadinski, M.R.; Zhang, G.; Wang, Q. A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 2015, 25, 3505–3513. [Google Scholar] [CrossRef]
- Hu, P.; Shen, Y.; Guan, Y.; Zhang, X.; Lin, Y.; Zhang, Q.; Nan, C.W. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 2014, 24, 3172–3178. [Google Scholar] [CrossRef]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.; Jeong, D.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Hao, X.; Zhai, J.; Kong, L.B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1–57. [Google Scholar] [CrossRef]
- Luo, S.; Yu, J.; Yu, S.; Sun, R.; Cao, L.; Liao, W.H.; Wong, C.P. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 2018, 9, 1803204. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, T.; Zhang, C.; Shang, Y.; Lei, Q.; Chi, Q. Advances in polymer dielectrics with high energy storage performance by designing electric charge trap structures. Adv. Mater. 2024, 36, 2310272. [Google Scholar] [CrossRef]
- Wu, J.; Mahajan, A.; Riekehr, L.; Zhang, H.; Yang, B.; Meng, N.; Zhang, Z.; Yan, H. Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 2018, 50, 723–732. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; San, X.; Wang, N.; Zhao, L. High energy storage performance in AgNbO3 relaxor ferroelectric films induced by nanopillar structure. J. Mater. Sci. Technol. 2023, 155, 160–166. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, G.; Wang, J.; Liu, Y.; Luo, J.; Lyu, Y. Optimization of energy-storage performance of Mn-doped BaZr0.2Ti0.8O3 lead-free ferroelectric thin films by the sol-gel method. J. Sol-Gel Sci. Technol. 2023, 107, 560–568. [Google Scholar] [CrossRef]
- Peddigari, M.; Wang, B.; Wang, R.; Yoon, W.; Jang, J.; Lee, H.; Song, K.; Hwang, G.; Wang, K.; Hou, Y.; et al. Giant energy density via mechanically tailored relaxor ferroelectric behavior of PZT thick film. Adv. Mater. 2023, 35, 2302554. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yu, Z.; Pan, Z.; Zhao, J.; Fu, Z.; Chen, X.; Li, H.; Li, P.; Liu, J.; Zhai, J. Giant energy storage density with antiferroelectric-like properties in BNT-based ceramics via phase structure engineering. Small 2023, 19, 2302346. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, D.; Li, D.; Avdeev, M.; Jing, H.; Xu, M.; Guo, Y.; Shi, D.; Zhou, T.; Liu, W. Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics. Nat. Commun. 2023, 14, 5725. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, Q.; Zhang, G.; Zhang, X.; Liu, Z.; Gong, H.; Zhang, Z. Synergistic enhancement of dielectric polymers through fluorine incorporation for improved energy storage, reduced loss, and enhanced processability. Adv. Funct. Mater. 2024, 34, 2406219. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Zhang, Q.; Hao, X. Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method. Ceram. Int. 2016, 42, 12537–12542. [Google Scholar] [CrossRef]
- Shangguan, D.; Duan, Y.; Wang, B.; Wang, C.; Li, J.; Bai, Y.; Zhang, F.; Li, Y.; Wu, Y.; Wang, Z.J. Enhanced energy-storage performances of (1−x)PbZrO3−xPbSnO3 antiferroelectric thin films under low electric fields. J. Alloys Compd. 2021, 870, 159440. [Google Scholar] [CrossRef]
- Li, Y.; Geng, W.; Zhang, L.; Yang, X.; Qiao, X.; Zheng, D.; Zhang, L.; He, J.; Hou, X.; Chou, X. Flexible PLZT antiferroelectric film capacitor for energy storage in wide temperature range. J. Alloys Compd. 2021, 868, 159129. [Google Scholar] [CrossRef]
- Liu, P.; Fan, B.; Yang, G.; Li, W.; Zhang, H.; Jiang, S. High energy density at high temperature in PlZST antiferroelectric ceramics. J. Mater. Chem. C 2019, 7, 4587–4594. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Tang, H.; Jian, X.; Zhao, X.; Yao, Y.; Tao, T.; Liang, B.; Lu, S.-G. Superior energy storage density and giant negative electrocaloric effects in (Pb0.98La0.02)(Zr, Sn)O3 antiferroelectric ceramics. Scr. Mater. 2021, 200, 113920. [Google Scholar] [CrossRef]
- Gao, P.; Liu, C.; Liu, Z.; Wan, H.; Yuan, Y.; Li, H.; Pu, Y.; Ye, Z.-G. Softening of antiferroelectric order in a novel PbZrO3-based solid solution for energy storage. J. Eur. Ceram. Soc. 2022, 42, 1370–1379. [Google Scholar] [CrossRef]
- Tang, Z.; Hu, S.; Yao, D.; Li, Z.; Liu, Z.; Guo, X.; Lu, B.; Fan, J.; Tang, X.-G.; Lu, S.-G.; et al. Enhanced energy-storage density and temperature stability of Pb0.89La0.06Sr0.05(Zr0.95Ti0.05)O3 anti-ferroelectric thin film capacitor. J. Mater. 2022, 8, 239–246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Yin, C.; Zhang, X.; Chi, Q. High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates. Materials 2025, 18, 2353. https://doi.org/10.3390/ma18102353
Guo J, Yin C, Zhang X, Chi Q. High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates. Materials. 2025; 18(10):2353. https://doi.org/10.3390/ma18102353
Chicago/Turabian StyleGuo, Jianzeng, Chao Yin, Xue Zhang, and Qingguo Chi. 2025. "High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates" Materials 18, no. 10: 2353. https://doi.org/10.3390/ma18102353
APA StyleGuo, J., Yin, C., Zhang, X., & Chi, Q. (2025). High-Energy Storage Performance in La-Doped Lead Zirconate Films on Flexible Mica Substrates. Materials, 18(10), 2353. https://doi.org/10.3390/ma18102353