Magnetic Characteristics of FeSiB Cores in Motors Revealed by Experiment and Finite-Element Simulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Thermal Behavior
3.2. Magnetization
3.3. Amorphous Core Loss
3.4. Finite-Element Simulation
4. Conclusions
- (1)
- The FeSiB amorphous core annealed at 460 °C for 10 min exhibits a high magnetic flux density of 1.54 T and low core loss of 0.11 W/kg at 50 Hz and 5.45 W/kg at 1 kHz at 1 T. These values are essential for ensuring high magnetic response and energy efficiency in motors and other electronic devices.
- (2)
- Finite-element simulation analysis reveals that the reduced core loss in the FeSiB motor, compared to the 50WW270 silicon steel motor, is primarily attributable to the stator loss, which in turn is ultimately governed by the microstructure and magnetic properties of the soft-magnetic material.
- (3)
- Both amorphous alloy and silicon steel materials contribute to enhanced motor response speed. The current amorphous motor demonstrates stable electromagnetic torque (2.16 N·m) with reduced torque fluctuation (3.41%), resulting in decreased noise and vibration during motor operation, which improves the motor’s operational stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bottauscio, O. Soft Magnetic Materials 21 Publication Chair’s Preface. In Proceedings of the Selected Papers from the 21st Soft Magnetic Materials Conference (SMM 21), Budapest, Hungary, 1–4 September 2013. [Google Scholar]
- McHenry, M.E.; Willard, M.A.; Laughlin, D.E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 1999, 44, 291–433. [Google Scholar] [CrossRef]
- Makino, A.; Kubota, T.; Yubuta, K.; Inoue, A.; Urata, A.; Matsumoto, H.; Yoshida, S. Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited). J. Appl. Phys. 2011, 109, 07A302. [Google Scholar] [CrossRef]
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft magnetic material status and trends in electric machines. IEEE Trans. Ind. Electron. 2017, 64, 2405–2414. [Google Scholar] [CrossRef]
- Liu, R.F.; Ma, X.; Cao, J.C.; Wu, Z.G. Performance comparison of amorphous and silicon steel used in stator core of permanent magnet synchronous motors. Elect. Mach. Cont. 2020, 24, 61–68. [Google Scholar]
- Ouyang, G.; Chen, X.; Liang, Y.; Macziewski, C.; Cui, J. Review of Fe-6.5 wt%Si high silicon steel-A promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 2019, 481, 234–250. [Google Scholar] [CrossRef]
- Egbu, J.; Ohodnicki, P.R., Jr.; Baltrus, J.P.; Talaat, A.; Wright, R.F.; McHenry, M.E. Analysis of surface roughness and oxidation of FeNi-based metal amorphous nanocomposite alloys. J. Alloys Compd. 2022, 912, 165155. [Google Scholar] [CrossRef]
- Jiang, M.F.; Cai, M.J.; Zhou, J.; Di, S.Y.; Li, X.; Luo, Q.; Shen, B.L. Superior high-frequency performances of Fe-based soft-magnetic nanocrystalline alloys. Mater. Today Nano 2023, 22, 100307. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.S.; Hou, X.B.; Ke, H.B.; Fan, X.D.; Luan, J.H.; Peng, H.L.; Zeng, Q.S.; Lou, H.B.; Wang, J.G.; et al. Ultrahigh permeability at high frequencies via a magnetic-heterogeneous nanocrystallization mechanism in an iron-Based amorphous alloy. Adv. Mater. 2023, 35, 2304490. [Google Scholar] [CrossRef]
- Lu, S.H.; Wang, M.G.; Zhao, Z.K. Recent advances and future developments in Fe-based amorphous soft magnetic composites. J. Non-Cryst. Solids 2023, 616, 122440. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, J.H.; Wang, J.H.; Zhou, F.; Sun, H.B. Numerical simulation analysis of high-speed asynchronous motor based on Fe-based amorphous alloy and SMC stator. J. Phys. Conf. Ser. 2022, 2390, 012104. [Google Scholar] [CrossRef]
- Lai, Y.F.; Hu, X.L.; Shi, G.B.; Yu, J.T.; Wang, L.; Gao, Z.F. Loss and efficiency analysis of the brushless direct current motor with an amorphous stator core. J. Electr. Eng. Technol. 2023, 18, 2075–2085. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Yi, H.; Xu, J.; Xie, K.; Qi, Y.; Ren, S.L.; Wang, H.D. Performance study and optimization design of high-speed amorphous alloy induction motor. Energies 2021, 14, 2468. [Google Scholar] [CrossRef]
- Tao, D.J.; Li, G.F.; Hou, P.; Hu, G. Analysis of load loss characteristics of FeCo alloy high speed permanent magnet motor. Machines 2022, 10, 735. [Google Scholar] [CrossRef]
- Hu, H.Y.; Wang, J.B.; Huang, S.S.; Tian, B.Z.; Wang, L.H.; Pei, R. Loss analysis of magnetization annealed amorphous alloy replacement stator teeth. AIP Adv. 2023, 13, 045101. [Google Scholar] [CrossRef]
- Li, L.J.; Lu, Z.C.; Li, Z.; Wu, X.R.; Gao, S.; Li, D.R. Magnetic characteristics of nanocrystalline alloy stator core for high speed switched reluctance motor. Elect. Mach. Cont. Appl. 2019, 46, 88–93. [Google Scholar]
- Fan, X.D.; Jiang, M.F.; Zhang, T.; Hou, L.; Wang, C.X.; Shen, B.L. Thermal, structural and soft magnetic properties of FeSiBPCCu alloys. J. Non-Cryst. Solids 2020, 533, 119941. [Google Scholar] [CrossRef]
- Hou, L.; Wang, B.J.; Liu, L.; Mao, X.H.; Zhang, M.Y.; Yuan, C.C.; Li, Z.; Ju, W.W.; Feng, H.C.; Tang, C.Y.; et al. Tailoring magnetic softness of Fe-based amorphous alloys with superior magnetization by magnetic field annealing. J. Mater. Sci. Technol. 2024, 200, 27–37. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, C.; Liu, H.S.; Luo, Q.; Fan, X.D.; Li, W.H.; Li, M.R. Tunable and attractive magnetic properties of FeBPSiCu alloys. J. Alloys Compd. 2021, 859, 157863. [Google Scholar] [CrossRef]
- Li, X.S.; Zhou, J.; Shen, L.Q.; Sun, B.A.; Bai, H.Y.; Wang, W.H. Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous-nanocrystalline transitional microstructure in an FeCo-based Alloy. Adv. Mater. 2022, 35, 2205863. [Google Scholar] [CrossRef]
- Fan, X.D.; Zhang, T.; Yang, W.M.; Luan, J.H.; Jiao, Z.B.; Li, H. Design of FeSiBPCu soft magnetic alloys with good amorphous forming ability and ultra-wide crystallization window. J. Mater. Sci. Technol. 2023, 147, 124–131. [Google Scholar] [CrossRef]
- Wang, C.X.; Wu, Z.Y.; Feng, X.M.; Li, Z.; Gu, Y.; Zhang, Y.; Tan, X.H.; Xu, H. The effects of magnetic field annealing on the magnetic properties and microstructure of Fe80Si9B11 amorphous alloys. Intermetallics 2020, 118, 106689. [Google Scholar] [CrossRef]
- Fan, X.D.; Zhang, T.; Jiang, M.F.; Yang, W.W.; Shen, B.L. Synthesis of novel FeSiBPCCu alloys with high amorphous forming ability and good soft magnetic properties. J. Non-Cryst. Solids 2019, 50, 36–43. [Google Scholar] [CrossRef]
- Yao, K.F.; Shi, L.X.; Chen, S.Q.; Yang, S.; Chen, N.; Jia, J.L. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta. Phys. Sin-Ch. Ed. 2018, 67, 016101. [Google Scholar]
- Lin, J.C.; Li, X.L.; Zhou, S.X.; Zhang, Q.; Li, Z.Z.; Wang, M.X.; Shi, G.B.; Wang, L.; Zhang, G.Q. Effects of heat treatment in air on soft magnetic properties of FeCoSiBPC amorphous core. J. Non-Cryst. Solids 2022, 597, 121932. [Google Scholar] [CrossRef]
- Biráková, Z.; Kollár, P.; Füzer, J.; Bureš, R.; Fáberová, M. Irreversible permeability of Fe-Based soft magnetic composites. Acta Phys. Pol. 2020, 137, 843–845. [Google Scholar] [CrossRef]
- Kollár, P.; Olekšáková, D.; Vojtek, V.; Füzer, J.; Fáberová, M.; Bureš, R. Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites. J. Magn. Magn. Mater. 2017, 424, 245–250. [Google Scholar] [CrossRef]
- Li, D.R.; Li, S.H.; Lu, Z.C. The effects of post-processing on longitudinal magnetostriction and core losses of high saturation flux density FeSiBC amorphous alloy ribbons and cores. J. Magn. Magn. Mater. 2021, 538, 168272. [Google Scholar] [CrossRef]
- Hawelek, L.; Warski, T.; Radoń, A.; Pilsniak, A.; Maziarz, W.; Szlezynger, M.; Kadziolka-Gawel, M.; Kolano-Burian, A. Structure and magnetic properties of thermodynamically predicted rapidly quenched Fe85-xCuxB15 alloys. Materials 2021, 14, 7807. [Google Scholar] [CrossRef]
- Suzuki, K.; Parsons, R.; Zang, B.; Onodera, K.; Kishimoto, H.; Shoji, T.; Kato, A. Nano-crystallization of amorphous alloys by ultra-rapid annealing: An effective approach to magnetic softening. J. Alloys Compd. 2018, 735, 613–618. [Google Scholar] [CrossRef]
- Makino, A.; Men, H.; Kubota, T.; Yubuta, K.; Inoue, A. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness. J. Appl. Phys. 2009, 105, 07A308. [Google Scholar] [CrossRef]
- Murugaiyan, P.; Mitra, A.; Roy, R.K.; Panda, A.K. Nanocrystallization and Core-loss properties of Fe-rich FeSiBPNbCu nanocrystalline alloy. J. Magn. Magn. Mater. 2022, 552, 169228. [Google Scholar] [CrossRef]
- Fan, X.D.; Jiang, M.F.; Wang, Y.H.; Li, D.H.; Hou, L.; Yang, W.M.; Shen, B.L. Effect of Ni substitution for Si element on thermal and soft magnetic properties of Fe73.5NixSi15.5-xB7Nb3Cu1 nanocrystalline alloys. J. Electron. Mater. 2021, 50, 4577–4585. [Google Scholar] [CrossRef]
- Ouyang, G.; Macziewski, C.R.; Jensen, B.; Ma, T.; Choudhary, R.; Dennis, K.; Zhou, L.; Paudyal, D.; Anderson, I.; Kramer, M.J.; et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5% Si alloys. Acta Mater. 2021, 205, 116575. [Google Scholar] [CrossRef]
- Ogawa, Y.; Naoe, M.; Yoshizawa, Y.; Hasegawa, R. Magnetic properties of high Bs Fe-based amorphous material. J. Magn. Magn. Mater. 2006, 304, e675–e677. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
Rated power/W | 750 | Pole numbers | 10 |
Rated speed/rpm | 3000 | Slot numbers | 9 |
Rated voltage/V | 110 | Rotor inside diameter/mm | 10 |
Length of core/mm | 56.7 | Rotor outer diameter/mm | 39.8 |
Stator inside diameter/mm | 41.1 | Connection type | Wye |
Stator outer diameter/mm | 76 | Permanent magnet (PM) | NdFeB |
Operation Time | Position | Types of Stator Materials | |||
---|---|---|---|---|---|
420 °C (T) | 460 °C (T) | 480 °C (T) | 50WW270 (T) | ||
5 ms | m1 | 0.79 | 0.89 | 0.79 | 0.96 |
m2 | 0.80 | 0.82 | 0.78 | 0.86 | |
m3 | 0.63 | 0.66 | 0.60 | 0.66 | |
30 ms | m4 | 0.81 | 0.85 | 0.81 | 0.86 |
m5 | 0.73 | 0.78 | 0.72 | 0.79 | |
m6 | 0.68 | 0.69 | 0.67 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Hou, L.; Ju, W.; Ma, Y.; Guo, Z.; Ma, D.; Liang, L.; Liu, H.; Yang, W. Magnetic Characteristics of FeSiB Cores in Motors Revealed by Experiment and Finite-Element Simulation. Materials 2025, 18, 2325. https://doi.org/10.3390/ma18102325
Wang M, Hou L, Ju W, Ma Y, Guo Z, Ma D, Liang L, Liu H, Yang W. Magnetic Characteristics of FeSiB Cores in Motors Revealed by Experiment and Finite-Element Simulation. Materials. 2025; 18(10):2325. https://doi.org/10.3390/ma18102325
Chicago/Turabian StyleWang, Meng, Long Hou, Wenwei Ju, Yan Ma, Zhongkai Guo, Dianguo Ma, Lanju Liang, Haishun Liu, and Weiming Yang. 2025. "Magnetic Characteristics of FeSiB Cores in Motors Revealed by Experiment and Finite-Element Simulation" Materials 18, no. 10: 2325. https://doi.org/10.3390/ma18102325
APA StyleWang, M., Hou, L., Ju, W., Ma, Y., Guo, Z., Ma, D., Liang, L., Liu, H., & Yang, W. (2025). Magnetic Characteristics of FeSiB Cores in Motors Revealed by Experiment and Finite-Element Simulation. Materials, 18(10), 2325. https://doi.org/10.3390/ma18102325