Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Ceramic Pellets
2.3. Grafting of Initiator Followed by Polymerizations
2.4. Characterizations
3. Results and Discussion
3.1. Grafting of Zwitterionic Polymers on Zirconia Pellets
3.2. Analysis of Functionalized Surfaces Using XPS and AFM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moayedi, S.; Xia, W.; Lundergan, L.; Yuan, H.; Xu, J. Zwitterionic Polymers for Biomedical Applications: Antimicrobial and Antifouling Strategies toward Implantable Medical Devices and Drug Delivery. Langmuir 2024, 40, 23125–23145. [Google Scholar] [CrossRef] [PubMed]
- Laschensky, A. Structures and Synthesis of Zwitterionic Polymers. Polymers 2014, 6, 1544–1601. [Google Scholar] [CrossRef]
- Qu, K.; Yuan, Z.; Wang, Y.; Song, Z.; Gong, X.; Zhao, Y.; Mu, Q.; Zhan, Q.; Xu, W.; Wang, L. Structures, properties, and applications of zwitterionic polymers. ChemPhysMater 2022, 1, 294–309. [Google Scholar] [CrossRef]
- Zhu, M.M.; Fang, Y.; Chen, Y.C.; Lei, Y.Q.; Fang, L.F.; Zhu, B.K.; Matsuyama, H. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers. J. Colloid Interface Sci. 2021, 584, 225–235. [Google Scholar] [CrossRef]
- Burmeister, N.; Zorn, E.; Preuss, L.; Timm, D.; Scharnagl, N.; Ronhke, M.; Wicha, S.G.; Streit, W.R.; Maison, W. Low-Fouling and Antibacterial Polymer Brushes via Surface-Initiated Polymerization of a Mixed Zwitterionic and Cationic Monomer. Langmuir 2023, 39, 17959–17971. [Google Scholar] [CrossRef]
- Li, Q.; Wen, C.; Yang, J.; Zhou, X.; Zhu, Y.; Zheng, J.; Cheng, G.; Bai, J.; Xu, T.; Ji, J.; et al. Zwitterionic Biomaterials. Chem. Rev. 2022, 22, 17073–17154. [Google Scholar] [CrossRef]
- Dezanet, C.; Dragoe, D.; Marie, P.; Harfouche, N.; Froissart, S.; Fouchet, A.; Rouden, J.; Lecourt, J.; Harnois, C.; Thébault, P.; et al. Zirconia surface polymer grafting via dopamine-assisted co-deposition and radical photopolymerization. Prog. Org. Coat. 2022, 173, 107202. [Google Scholar] [CrossRef]
- Ben-Haj-Salem, J.; Dragoe, D.; Marie, P.; Froissart, S.; Fouchet, A.; Rouden, J.; Lecourt, J.; Harnois, C.; Touil, S.; Baudoux, J.; et al. Amido bisphosphonic acid as anchoring agent and photopolymerization initiator onto zirconium oxide surface. Eur. Pol. J. 2023, 195, 112207. [Google Scholar] [CrossRef]
- Harfouche, N.; Marie, P.; Dragoe, D.; Le, H.; Thébault, P.; Bilot, C.; Fouchet, A.; Rouden, J.; Baudoux, J.; Lepoittevin, B. Antibacterial Zirconia Surfaces from Organocatalyzed Atom-Transfer Radical Polymerization. Materials 2024, 17, 1775. [Google Scholar] [CrossRef]
- Jakubiak, J.; Allonas, X.; Fouassier, J.P.; Sionkowska, A.; Andrejewska, E.; Linden, L.A.; Rabek, J.F. Camphorquinone-amines photoinitiating systems for the initiation of free radical polymerization. Polymer 2003, 44, 5219–5226. [Google Scholar] [CrossRef]
- Retzko, I.; Friedrich, J.F.; Lippitz, A.; Unger, W.E.S. Chemical analysis of plasma-polymerized films: The application of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (NEXAFS) and fourier transform infrared spectroscopy (FTIR). J. Electron Spectrosc. Relat. Phenom. 2001, 121, 111–129. [Google Scholar] [CrossRef]
- Liua, P.-S.; Chena, Q.; Wua, S.-S.; Shena, J.; Lina, S.-C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J. Membr. Sci. 2010, 350, 387–394. [Google Scholar] [CrossRef]
- Alswieleh, A.M.; Nan Cheng, N.; Canton, I.; Ustbas, B.; Xue, X.; Ladmiral, V.; Xia, S.; Ducker, R.E.; El Zubir, O.; Cartron, M.L.; et al. Zwitterionic Poly(amino acid methacrylate) Brushes. J. Am. Chem. Soc. 2014, 136, 9404–9413. [Google Scholar] [CrossRef]
- Peng, L.; Chang, L.; Bai, R.; Sun, Q.; Zhang, Y.; Liu, H.; Ma, C.; Lin, J.; Han, B. Zwitterion polymer-modified graphene oxides enhance antibacterial activity with improved biocompatibility and osteogenesis: An in vitro study. React. Funct. Polym. 2025, 212, 106229. [Google Scholar] [CrossRef]
- Quintana, R.; Jańczewski, D.; Vasantha, V.A.; Jana, S.; Lee, S.S.C.; Parra-Velandia, F.J.; Guo, S.; Parthiban, A.; Teo, S.L.-M.; Vancso, G.J. Sulfobetaine-based polymer brushes in marine environment: Is there an effect of the polymerizable group on the antifouling performance? Colloids Surf. B Biointerfaces 2014, 120, 118–124. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Ren, B.; Yang, J.; Zheng, J. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect. Langmuir 2018, 34, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gui, Z.; Qian, J.; An, Q.; Xu, H.; Zhao, Q. Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. Eur. Pol. J. 2009, 45, 1403–1411. [Google Scholar] [CrossRef]
- Liu, P.-S.; Chen, Q.; Liu, X.; Yuan, B.; Wu, S.-S.; Shen, J.; Lin, S.-C. Grafting of Zwitterion from Cellulose Membranes via ATRP for Improving Blood Compatibility. Biomacromolecules 2009, 10, 2809–2816. [Google Scholar] [CrossRef]
- Men, S.; Mitchell, D.S.; Lovelock, K.R.J.; Licence, P. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues. ChemPhysChem 2015, 16, 2211–2218. [Google Scholar] [CrossRef]
- Zafar, A.; Evans, T.; Palgrave, R.G.; ud-Din, I. An X-ray photoelectron spectroscopy study of ionic liquids based on a bridged dicationic moiety. J. Chem. Res. 2022, 46. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database; Wiley: Chichester, UK, 1992. [Google Scholar]
- Chen, Y.; Ma, Y.; He, Q.; Han, Q.; Zhang, Q.; Chen, Q. Construction of pyridinium/N-chloramine polysiloxane on cellulose for synergistic biocidal application. Cellulose 2019, 26, 5033–5049. [Google Scholar] [CrossRef]
- van Andel, E.; Lange, S.C.; Pujari, S.P.; Tijhaar, E.J.; Smulders, M.M.J.; Savelkoul, H.F.J.; Zuilhof, H. Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform. Langmuir 2018, 35, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhuang, B.; Yu, J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem.–Asian J. 2020, 15, 2060–2075. [Google Scholar] [CrossRef] [PubMed]
Monomer | M1 | M2 | M3 | M4 |
---|---|---|---|---|
Polymer | P1 | P2 | P3 | P4 |
Polymer chemical structure | ||||
Water contact angle (°) | 38 ± 2 | 39 ± 3 | 41 ± 3 | 36 ± 2 |
Atomic % Theoretical a | Atomic % Experimental | ||
C1s | 77.2 | 74.1 | |
O1s | 13.6 | 15.7 | |
S2p | 4.5 | 5.3 | |
N1s | 4.5 | 3.9 | |
Zr3d | - | <1 | |
Na1s | - | <1 | |
Cl2p | - | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dezanet, C.; Dragoe, D.; Fouchet, A.; Lecourt, J.; Harnois, C.; Rouden, J.; Baudoux, J.; Lepoittevin, B. Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation. Materials 2025, 18, 2279. https://doi.org/10.3390/ma18102279
Dezanet C, Dragoe D, Fouchet A, Lecourt J, Harnois C, Rouden J, Baudoux J, Lepoittevin B. Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation. Materials. 2025; 18(10):2279. https://doi.org/10.3390/ma18102279
Chicago/Turabian StyleDezanet, Clément, Diana Dragoe, Arnaud Fouchet, Jérôme Lecourt, Christelle Harnois, Jacques Rouden, Jérôme Baudoux, and Bénédicte Lepoittevin. 2025. "Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation" Materials 18, no. 10: 2279. https://doi.org/10.3390/ma18102279
APA StyleDezanet, C., Dragoe, D., Fouchet, A., Lecourt, J., Harnois, C., Rouden, J., Baudoux, J., & Lepoittevin, B. (2025). Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation. Materials, 18(10), 2279. https://doi.org/10.3390/ma18102279