Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen
Abstract
:1. Introduction
2. Experimental Program
2.1. Scope and Objectives
2.2. Experimental Plan
- Physico-chemical properties, in our case the chemical composition by means of Fourier-transform infrared spectroscopy (FTIR), described in Section 2.6.1;
- Standard rheological properties, obtained with the BRV, the DSR, the MSCR, and the BBR tests, described in Section 2.6.2;
- The linear viscoelastic (LVE) behaviour, characterized by a complex shear modulus (G*) test, as described in Section 2.6.3.
2.3. Materials
2.4. Sample Preparation Procedure
2.5. Sample Aging Procedure
2.6. Test Methods
2.6.1. Characterization of Physico-Chemical Properties
2.6.2. Characterization of Standard Rheological Properties
- The viscosity (η) at very high temperatures was measured with a Brookfield rotational viscosity (BRV) test following the AASHTO T316 standard, carried out on an AMETEK® DV2TLV viscometer (Berwyn, PA, USA) with the SC4-21 spindle. The test temperatures were 135, 150, and 165 °C.
- The stiffness at high temperatures was appraised with a dynamic shear rheometer (DSR) test following the AASHTO T315 standard, carried out on a Malvern DSR (model Kinexus) with a 25 mm diameter and 1 mm gap parallel plate geometry (Malvern, UK). The stiffness parameter |G*|/sinφ at 1.59 Hz was recorded at different temperatures, starting from 58 °C and increasing by 6 °C each step. For each bitumen, the last test temperature was set such as |G*|/sinφ, ending up lower than 1.00 kPa (up to 100 °C for the stiffest bitumen in this study), and the second to last temperature corresponds to the PG high temperature (Thigh). The stiffness parameter is derived from the norm of the complex shear modulus labelled “|G*|” and from the phase angle labelled φ. The reader should notice that other labels might be used for those properties in other sources, especially “G*” for the norm (often called “dynamic modulus”) and “δ” for the phase angle. Those were not selected to avoid confusion with the complex modulus analysis (Section 2.6.3). Following the AASTHO M 320 standard, the results of DSR tests were interpolated to obtain, respectively, the “critical”, or “continuous” PG high temperature (Equation (1)).
- The creep and recovery potential at high temperatures was evaluated with a multiple stress creep recovery (MSCR) test following the AASHTO T350 standard, carried out on the same test set-up as the DSR test. The non-recoverable creep compliance (Jnr,3.2) at 3.2 kPa was recorded at least at 58, 64, and 70 °C. For stiffer bitumens, the test temperature range was extended with a 6 °C step increase to Thigh, when the latter was higher than 70 °C.
- Finally, the creep compliance at low temperatures was investigated with a bending beam rheometer (BBR) test following the AASHTO T313 standard and carried out on a Cannon BBR rheometer, model “TE-BBR”. The secant modulus S(60) and the creep rate or m-value m(60) after 60s were measured either at −12 and −18 °C (for stiffer bitumen) or −18 and −24 °C (for softer bitumen). The lowest test temperature for which two rheological criteria are met, S(60) < 300 MPa and m(60) > 0.300, is first determined. The PG low temperature (Tlow) is then defined as 10 °C below this test temperature. Hence, a bitumen that passed at −12 and −18, but failed at −24 °C, possesses a Tlow of −28 °C. According to the AASHTO M 320 standard, the results of BBR tests are interpolated to obtain the critical low temperatures associated with each criterion (Equations (2) and (3)).
2.6.3. Characterization of the Linear Viscoelastic Behaviour
- Between −30 and −8 °C, 4 mm diameter with 2 mm gap PP, γ0 = 0.05% or 500 µm/m;
- Between −8 and 34 °C, 8 mm diameter with 2 mm gap PP, γ0 = 1% or 10,000 µm/m;
- Between 34 and 82 °C, 25 mm diameter with 1 mm gap PP, γ0 = 5% or 50,000 µm/m.
3. Results
3.1. Fourier-Transform Infrared Spectroscopy
3.2. Standard Rheological Tests
3.3. Complex Shear Modulus Test
4. Conclusions
- The FTIR carbonyl index appeared well-suited for tracking aging. However, no anti-aging effect of lignin could be detected with the proposed aging procedure. The sulphoxide index exhibited scattering due potentially to too many S=O bonds in the added lignin and to a limited spectral analysis method.
- The standard rheological tests showed that long-term aging primarily drove the rigidification of bitumen. Kraft lignin modification only provided a limited stiffening effect to the bitumen without any apparent anti-aging properties.
- The complex shear modulus (G*) tests successfully combined the 25, 8, and 4 mm parallel-plate geometries to obtain a precise, continuous spectrum. Experimental challenges at low temperatures with the 4 mm geometry were discussed. The most critical recommendation is the restriction of the shear strain amplitude (γ0) to 500 µm/m to avoid sample failure.
- For all bitumens, the time–temperature superposition principle (TTSP) was verified and the 2S2P1D model excellently fit the experimental data.
- A quantitative sensitivity analysis over the variations in the 2S2P1D constants showed that aging has a strong rigidification effect at low and intermediate equivalent frequencies, whereas it has virtually no impact at high equivalent frequencies, near the glassy state of bitumen. In parallel, the low-dosage lignin modification has a very limited stiffening impact on the LVE behaviour and exhibits no anti-aging properties.
- Eventually, the study concluded that the Kraft lignin used here at low dosages in this study could be assimilated to an inert filler in the first approximation. There is little to no apparent physico-chemical modification of the bitumen.
5. Future Developments
- Generalize the use and monitoring of LVE model parameters to characterize, quantify, and distinguish physical phenomena;
- Use a more in-depth chemical study (e.g., the influence of phenolic and other components) on the anti-aging potential of this lignin and other lignin sources and introduce other aging mechanisms such as exposure to light or ultraviolet rays, moisture, or various atmospheric gases;
- Study the anti-aging potential of lignin, an amorphous biopolymer, on polymer-modified bitumens;
- Use a compatibilizer for lignin to improve its interaction with bitumen (e.g., functional chains).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Wang, H.; Liu, C.; Ge, D.; You, Z.; Yu, M. High-Temperature Rheological Behavior and Fatigue Performance of Lignin Modified Asphalt Binder. Constr. Build. Mater. 2020, 230, 117063. [Google Scholar] [CrossRef]
- Al-Hadidy, A.I. Experimental Investigation on Performance of Asphalt Mixtures with Waste Materials. Int. J. Pavement Res. Technol. 2024, 17, 1079–1091. [Google Scholar] [CrossRef]
- El-latief, R.A.E.A. Asphalt Modified with Biomaterials as Eco-Friendly and Sustainable Modifiers. In Modified Asphalt; Rivera-Armenta, J.L., Salazar-Cruz, B.A., Eds.; InTech: London, UK, 2018; ISBN 978-1-78923-726-9. [Google Scholar]
- Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, G. Lignin. In Wood Chemistry and Wood Biotechnology; Ek, M., Gellerstedt, G., Henriksson, G., Eds.; Walter de Gruyter: Berlin, Germany, 2009; Chapter 6; pp. 121–146. ISBN 978-3-11-021339-3. [Google Scholar]
- Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; Chapter 3; pp. 35–74. ISBN 0-8493-1588-3. [Google Scholar]
- Gosselink, R. Lignin Valorization towards Materials, Chemicals and Energy. In Proceedings of the 2nd Lund symposium on lignin and hemicellulose valorisation, Lund, Sweden, 4 November 2015. [Google Scholar]
- Sjöström, E. Wood Chemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 1993; ISBN 978-0-08-092589-9. [Google Scholar]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of Lignin Content in Cellulose Pulp on Paper Durability. Sci. Rep. 2020, 10, 1998. [Google Scholar] [CrossRef]
- de Candolle, A.P. Théorie Élémentaire de La Botanique Ou Exposition Des Principes de La Classification Naturelle et de l’art de Décrire et d’étudier Les Végétaux; Deterville: Paris, France, 1813. [Google Scholar]
- Mastrolitti, S.; Borsella, E.; Giuliano, A.; Petrone, M.T.; De Bari, I.; Gosselink, R.J.A.; van Erven, G.; Annevelink, E.; Traintafyllidis, K.S.; Stichnothe, H. Sustainable Lignin Valorization: Technical Lignin, Processes and Market Development; IEA Bioenergy Task 42 & LignoCOST; Wageningen University & Research: Wageningen, The Netherlands, 2021. [Google Scholar]
- McCoy, M. Has Lignin’s Time Finally Come? CEN Glob. Enterp. 2016, 94, 35–37. [Google Scholar] [CrossRef]
- Kun, D.; Pukánszky, B. Polymer/Lignin Blends: Interactions, Properties, Applications. Eur. Polym. J. 2017, 93, 618–641. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and Characterization of Lignin from Different Biomass Resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef]
- Boeriu, C.G.; Fiţigău, F.I.; Gosselink, R.J.A.; Frissen, A.E.; Stoutjesdijk, J.; Peter, F. Fractionation of Five Technical Lignins by Selective Extraction in Green Solvents and Characterisation of Isolated Fractions. Ind. Crops Prod. 2014, 62, 481–490. [Google Scholar] [CrossRef]
- Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. The Use of Lignin for Sustainable Asphalt Pavements: A Literature Review. Constr. Build. Mater. 2023, 362, 129773. [Google Scholar] [CrossRef]
- Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as Renewable and Superior Asphalt Binder Modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817–2823. [Google Scholar] [CrossRef]
- Haq, I.; Mazumder, P.; Kalamdhad, A.S. Recent Advances in Removal of Lignin from Paper Industry Wastewater and Its Industrial Applications–A Review. Bioresour. Technol. 2020, 312, 123636. [Google Scholar] [CrossRef] [PubMed]
- Tokay, B.A. Biomass Chemicals. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Hoboken, New Jersey, USA, 2000; ISBN 978-3-527-30385-4. [Google Scholar]
- Terrel, R.L.; Rimsritong, S. Wood Lignins Used as Extenders for Asphalt in Bituminous Pavements. In Association of Asphalt Paving Technologists Proceedings; Association of Asphalt Paving Technologists (AAPT): St Paul, MN, USA, 1979; Volume 48, pp. 111–134. [Google Scholar]
- Van Vliet, D.; Slaghek, T.; Giezen, C.; Haaksman, I. Lignin as a Green Alternative for Bitumen. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 30 June 2016; Czech Technical University in Prague: Prague, Czech Republic, 2016. [Google Scholar]
- Kouisni, L.; Gagné, A.; Maki, K.; Holt-Hindle, P.; Paleologou, M. LignoForce System for the Recovery of Lignin from Black Liquor: Feedstock Options, Odor Profile, and Product Characterization. ACS Sustain. Chem. Eng. 2016, 4, 5152–5159. [Google Scholar] [CrossRef]
- Lok, B.; Mueller, G.; Ganster, J.; Erdmann, J.; Buettner, A.; Denk, P. Odor and Constituent Odorants of HDPE–Lignin Blends of Different Lignin Origin. Polymers 2022, 14, 206. [Google Scholar] [CrossRef]
- Al-falahat, W.; Lamothe, S.; Carret, J.-C.; Carter, A. Effects of Kraft Lignin on the Performance Grade of Two Bitumens Used for Cold Climate. Int. J. Pavement Res. Technol. 2024, 17, 1295–1308. [Google Scholar] [CrossRef]
- Sundstrom, D.W.; Klei, H.E.; Daubenspeck, T.H. Use of Byproduct Lignins as Extenders in Asphalt. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 496–500. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Wang, C.; Wu, W.; Han, W. Investigation of Lignin as an Alternative Extender of Bitumen for Asphalt Pavements. J. Clean. Prod. 2021, 283, 124663. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, S.; Wang, L.; Guo, L.; Shi, Q.; Jia, J.; Zhang, X.; Yu, H.; Xie, S. Lignin Structure Defines the Properties of Asphalt Binder as a Modifier. Constr. Build. Mater. 2021, 310, 125156. [Google Scholar] [CrossRef]
- Xu, C.; Wang, D.; Zhang, S.; Guo, E.; Luo, H.; Zhang, Z.; Yu, H. Effect of Lignin Modifier on Engineering Performance of Bituminous Binder and Mixture. Polymers 2021, 13, 1083. [Google Scholar] [CrossRef]
- Arafat, S.; Kumar, N.; Wasiuddin, N.M.; Owhe, E.O.; Lynam, J.G. Sustainable Lignin to Enhance Asphalt Binder Oxidative Aging Properties and Mix Properties. J. Clean. Prod. 2019, 217, 456–468. [Google Scholar] [CrossRef]
- Batista, K.B.; Padilha, R.P.L.; Castro, T.O.; Silva, C.F.S.C.; Araújo, M.F.A.S.; Leite, L.F.M.; Pasa, V.M.D.; Lins, V.F.C. High-Temperature, Low-Temperature and Weathering Aging Performance of Lignin Modified Asphalt Binders. Ind. Crops Prod. 2018, 111, 107–116. [Google Scholar] [CrossRef]
- Lynam, J.; Wasiuddin, N.; Arafat, S.; Kumar, N.; Owhe, E. Evaluating Using Louisiana Sourced Lignin as Partial Replacement in Asphalt Binder and as an Antioxidant; TRID Database: Leipzig, Germany, 2018. [Google Scholar]
- Rachman, F.; Yang, S.-H.; Chintya, H.; Chen, Y.-H.; Tran, H.-N. Characterization of Physical and Chemical Antioxidative Performance of Asphalt Using Bio-Additive from Paper Pulp Black Liquor. Constr. Build. Mater. 2023, 389, 131676. [Google Scholar] [CrossRef]
- The Shell Bitumen Handbook, 6th ed.; Hunter, R.N., Ed.; Thomas Telford Ltd.: London, UK, 2015; ISBN 978-0-7277-5837-8. [Google Scholar]
- 7c4-4101; Standard 4101–Bitumes. MTMD Les Publications du Québec: Capitale-Nationale, QC, Canada, 2023.
- Hobson, C. Evaluation of Lignin as an Antioxidant in Asphalt Binders and Bituminous Mixtures; Kansas Department of Transportation: Topeka, KS, USA, 2017. [Google Scholar]
- Asphalt Institute Technical Advisory Committee. Use of the Delta Tc Parameter to Characteirze Asphalt Binder Behavior; Asphalt Institute: Lexington, KY, USA, 2019; ISBN 978-1-934154-77-9. [Google Scholar]
- National Center for Asphalt Technology. The Delta Tc Parameter: What Is It and How Do We Use It? Asph. Technol. News 2017, 29, 9–10. [Google Scholar]
- Siroma, R.S. Méthodes expérimentales et théoriques d’estimation de la performance d’une chaussée bitumineuse à partir de l’analyse de ses bitumes extraits. Acad. J. Civ. Eng. 2023, 41, 808–815. [Google Scholar] [CrossRef]
- Chailleux, E.; Hammoum, F. La Structure Chimiques Des Bitumes Pétroliers. Actual. Chim. 2014, 385, 63–64. [Google Scholar]
- Anderson, R.M. The Asphalt Binder Handbook; Asphalt Institute: Lexington, KY, USA, 2011. [Google Scholar]
- Nivitha, M.R.; Prasad, E.; Krishnan, J.M. Ageing in Modified Bitumen Using FTIR Spectroscopy. Int. J. Pavement Eng. 2016, 17, 565–577. [Google Scholar] [CrossRef]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 1st ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-10631-0. [Google Scholar]
- Harnsberger, P.M.; Petersen, J.C.; Ensley, E.K.; Branlhaver, J.F. Comparison of Oxidation of SHRP Asphalts by Two Different Methods. Fuel Sci. Technol. Int. 1993, 11, 89–121. [Google Scholar] [CrossRef]
- Le Guern, M.; Chailleux, E.; Farcas, F.; Dreessen, S.; Mabille, I. Physico-Chemical Analysis of Five Hard Bitumens: Identification of Chemical Species and Molecular Organization before and after Artificial Aging. Fuel 2010, 89, 3330–3339. [Google Scholar] [CrossRef]
- Edwards, Y.; Tasdemir, Y.; Isacsson, U. Influence of Commercial Waxes on Bitumen Aging Properties. Energy Fuels 2005, 19, 2519–2525. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, S.; Bian, H.; Guo, Q.; Li, X. FTIR and Rheology Analysis of Aging on Different Ultraviolet Absorber Modified Bitumens. Constr. Build. Mater. 2016, 115, 48–53. [Google Scholar] [CrossRef]
- Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J. Comparison by Fourier Transform Infrared (FTIR) Spectroscopy of Different Ageing Techniques: Application to Road Bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H.; Zhu, H. Rheological Properties and Anti-Aging Performance of Asphalt Binder Modified with Wood Lignin. Constr. Build. Mater. 2017, 151, 801–808. [Google Scholar] [CrossRef]
- De Lima Neto, R.A.; Manoel, G.F.; De Sá Araujo, M.D.F.A.; Lins, V.D.F.C. The Effects of Kraft Lignin on Physical, Rheological and Anti-Ageing Properties of Asphalt Binders. Int. J. Adhes. Adhes. 2023, 125, 103414. [Google Scholar] [CrossRef]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef]
- Wang, H.; Derewecki, K. Rheological Properties of Asphalt Binder Partially Substituted with Wood Lignin. In Proceedings of the Airfield & Highway Pavement Conference, Los Angeles, CA, USA, 9–12 June 2013; 2013; pp. 977–986. [Google Scholar]
- Sirin, O.; Paul, D.K.; Kassem, E. State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives. Adv. Civ. Eng. 2018, 2018, 3428961. [Google Scholar] [CrossRef]
- Wright, J.S.; Johnson, E.R.; DiLabio, G.A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hussin, M.H. Current Advancement on the Isolation, Characterization and Application of Lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef]
- Haz, A.; Jablonsky, M.; Surina, I.; Kacik, F.; Bubenikova, T.; Durkovic, J. Chemical Composition and Thermal Behavior of Kraft Lignins. Forests 2019, 10, 483. [Google Scholar] [CrossRef]
- Rezazad Gohari, A.; Lamothe, S.; Bilodeau, J.-P.; Mansourian, A.; Carter, A. Laboratory Study on the Effect of Kraft Lignin and Sasobit® on Construction Temperatures, Compactability and Physical Properties of Hot and Warm Mix Asphalt; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Rezazad Gohari, A.; Lamothe, S.; Bilodeau, J.-P.; Mansourian, A.; Carter, A. Laboratory Study on Synergistic Effects of Sasobit® on Rheological and Chemo-Thermal Properties of Lignin-Modified Bitumen. Road Mater. Pavement Des. 2024, 26, 841–869. [Google Scholar] [CrossRef]
- Rezazad Gohari, A.; Lamothe, S.; Bilodeau, J.-P.; Mansourian, A.; Carter, A. Laboratory Study on Influence of Blending Conditions on Chemo-Thermal Characteristics of Lignin-Modified Bitumen. Appl. Sci. 2023, 13, 7766. [Google Scholar] [CrossRef]
- Lamothe, S.; Carret, J.-C.; Al-Falahat, W.; Carter, A. Field Trial Sections of Kraft Lignin-Modified Hot Mix Asphalt. In Proceedings of the Sixty-Seventh Annual Conference of the Canadian Technical Asphalt Association; Kelowna, BC, Canada, 5–9 November 2022, CTAA: Kelowna, BC, Canada, 2022; Volume 67, pp. 341–356. [Google Scholar]
- Lamothe, S.; Al-falahat, W.; Carret, J.-C.; Carter, A. Laboratory Study of the Effects of the Addition of Softwood Kraft Lignin by the Dry Process on the Compactability, Moisture Sensitivity, Rutting and Low-Temperature Cracking Resistance of an HMA. In Proceedings of the 10th International Conference on Maintenance and Rehabilitation of Pavements; Pereira, P., Pais, J., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Cham, Switzerland, 2024; Volume 522, pp. 168–177. ISBN 978-3-031-63587-8. [Google Scholar]
- Zhang, Y.; Liu, X.; Apostolidis, P.; Gard, W.; Van De Ven, M.; Erkens, S.; Jing, R. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 2019, 12, 4176. [Google Scholar] [CrossRef]
- Michel, Q.; Orozco, G.; Carter, A.; Vaillancourt, M. Influences of Type and Concentration of Recycled Mineral Construction, Renovation and Demolition Waste on the Linear Viscoelastic Behavior of Bituminous Mastics. Constr. Build. Mater. 2023, 371, 130668. [Google Scholar] [CrossRef]
- MTMD Les Publications du Québec. Choix des Composants–Enrobés (Norme 4202); Recommandations pour Construction Neuve, Reconstruction et Resurfaçage; MTMD Les Publications du Québec: Capitale-Nationale, QC, Canada, 2023. [Google Scholar]
- MTMD Les Publications du Québec. Recueil des Méthodes d’essai LC; MTMD Les Publications du Québec: Capitale-Nationale, QC, Canada, 2021. [Google Scholar]
- CAN/BNQ 2501-170 (R2022); Sols–Détermination de la Teneur en Eau. BNQ Bureau de normalisation du Québec: Montréal, QC, Canada, 2022.
- Olard, F.; Di Benedetto, H. General 2S2P1D Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes. Road Mater. Pavement Des. 2003, 4, 185–224. [Google Scholar] [CrossRef]
- Gražulytė, J.; Soenen, H.; Blom, J.; Vaitkus, A.; Židanavičiūtė, J.; Margaritis, A. Analysis of 4-Mm DSR Tests: Calibration, Sample Preparation, and Evaluation of Repeatability and Reproducibility. Road Mater. Pavement Des. 2021, 22, 557–571. [Google Scholar] [CrossRef]
- Mangiafico, S.; Sauzéat, C.; Di Benedetto, H. 2S2P1D Model Calibration Error from User Panel for One Bitumen and One Bituminous Mixture. Adv. Mater. Sci. Eng. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Linear Viscoelastic Properties of Bituminous Materials: From Binders to Mastics. J. Assoc. Asph. Paving Technol. 2007, 76, 455–494. [Google Scholar]
Property | Method or Standard A,B | Variable | Unit | Results |
---|---|---|---|---|
Density at 25 °C | ASTM D70 | dB | g/cm3 | 1.0263 |
Rotational viscosity at 135 °C | AASHTO T316 | η | mPa·s | 254 |
Rotational viscosity at 165 °C | AASHTO T316 | η | mPa·s | 80 |
Storage stability | LC 25-003 | - | °C | 0.4 |
Ring and ball temperature | LC 25-003 | TRB | °C | 42.5 |
Flash point | ASTM D92 | - | °C | 305 |
Ash content | ASTM D8078 | - | % | 0.06 |
RTFOT mass variation | AASHTO T240 | - | % | −0.415 |
Stiffness at 58 °C, unaged | AASHTO T315 | |G*|/sinφ | kPa | 1.24 |
PG high temperature | AASHTO M 320 | Thigh | °C | 59.7 |
PG low temperature | AASHTO M 320 | Tlow | °C | −30.1 |
BBR secant modulus at −18 °C, unaged | AASHTO T313 | S(60) | MPa | 109 |
BBR creep rate, unaged | AASHTO T313 | m(60) | - | 0.496 |
Stiffness at 58 °C, RTFO aged | AASHTO T315 | |G*|/sinφ | kPa | 3.22 |
MSCR elastic recovery at 3.2 kPa and 58 °C, RTFO-aged | AASHTO T350 | R3.2 | % | 0 |
MSCR non-recoverable creep at 3.2 kPa and 58 °C, RTFO-aged | AASHTO T350 | Jnr,3.2 | kPa−1 | 3.05 |
MSCR non-recoverable creep difference at 58 °C, RTFO-aged | AASHTO T350 | Jnr,diff | % | 9.6 |
BBR secant modulus at −18 °C, RTFO- + PAV-aged | AASHTO T313 | S(60) | MPa | 233 |
BBR creep rate, RTFOT + PAV aged | AASHTO T313 | m(60) | - | 0.344 |
Property A | Variable | Unit | Results B |
---|---|---|---|
Purity | - | % | 95 |
Potential hydrogen | - | pH | 3–4 |
Carboxylic acids content | - | mmol/g | 0.53 |
Phenols content | - | mmol/g | 2.62 |
Condensed phenols content | - | mmol/g | 2.14 |
Aliphatic alcohols content | - | mmol/g | 1.83 |
Density at 25 °C | dL | g/cm³ | 1.2–1.3 |
Moisture (water) content | %w | % | 1 |
Passing of 100 mesh (149 μm) | - | % | 99.3 |
Passing of 200 mesh (74 μm) | - | % | 97.6 |
Glass transition temperature | Tg | °C | 162 C |
Decomposition temperature | Td | °C | 150 D |
Ash content at 575 °C | - | % | 0.42 |
Test (Nbr. of Rep.) | Variable | Unit | T (°C) | PG58S–28 | 5%Lign | 10%Lign | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Un- aged | RTFO + 20 h A | RTFO + 40 h A | RTFO + 60 h A | Un- aged | RTFO + 20 h A | RTFO + 40 h A | RTFO + 60 h A | Un- aged | RTFO + 20 h A | RTFO + 40 h A | RTFO + 60 h A | ||||
BRV (2) | η | (mPa·s) | 135 | 342 | 784 | 1460 | 2203 | 375 | 913 | 1904 | 2737 | 421 | 1027 | 1772 | 2651 |
150 | 170 | 352 | 629 | 900 | 179 | 412 | 797 | 1057 | 207 | 468 | 748 | 1032 | |||
165 | 91 | 180 | 307 | 448 | 96 | 212 | 381 | 469 | 109 | 241 | 376 | 557 | |||
DSR (2) | |G*|/sinδ | (kPa) | 58 | 1.48 | 12.46 | 31.46 | 84.62 | 1.59 | 14.48 | 45.81 | 97.97 | 1.69 | 18.70 | 48.36 | 120.80 |
64 | 0.66 | 5.40 | 14.04 | 39.49 | 0.70 | 6.24 | 20.61 | 47.76 | 0.75 | 8.14 | 21.62 | 57.23 | |||
70 | 2.41 | 6.31 | 18.44 | 2.79 | 9.26 | 22.90 | 3.64 | 9.72 | 26.17 | ||||||
76 | 1.12 | 2.91 | 8.62 | 1.29 | 4.20 | 10.96 | 1.69 | 4.40 | 11.79 | ||||||
82 | 0.56 | 1.40 | 4.06 | 0.64 | 1.98 | 5.30 | 0.83 | 2.08 | 5.39 | ||||||
88 | 0.70 | 1.96 | 0.97 | 2.59 | 1.02 | 2.57 | |||||||||
94 | 0.98 | 1.29 | 0.53 | 1.28 | |||||||||||
100 | 0.66 | 0.66 | |||||||||||||
MSCR (2) | Jnr3.2 | (kPa−1) | 58 | 8.074 | 0.580 | 0.151 | 0.027 | 7.552 | 0.556 | 0.090 | 0.021 | 6.390 | 0.394 | 0.085 | 0.019 |
64 | 17.17 | 1.662 | 0.455 | 0.102 | 16.01 | 1.538 | 0.283 | 0.066 | 13.57 | 1.143 | 0.278 | 0.062 | |||
70 | 34.37 | 4.191 | 1.286 | 0.292 | 31.59 | 3.758 | 0.849 | 0.208 | 26.88 | 2.916 | 0.835 | 0.198 | |||
76 | 9.666 | 3.316 | 0.873 | 8.617 | 2.264 | 0.618 | 6.588 | 2.233 | 0.595 | ||||||
82 | 7.609 | 2.347 | 5.294 | 1.668 | 5.114 | 1.630 | |||||||||
88 | 5.509 | 11.080 | 3.964 | ||||||||||||
94 | 8.690 | ||||||||||||||
BBR (3) | S(60s) m(60s) | (MPa) (-) | −12 | 119 | 151 | 163 | 203 | ||||||||
0.347 | 0.317 | 0.329 | 0.293 | ||||||||||||
−18 | 110 | 225 | 250 | 266 | 121 | 258 | 290 | 320 | 144 | 281 | 325 | 376 | |||
0.471 | 0.339 | 0.312 | 0.274 | 0.464 | 0.330 | 0.299 | 0.276 | 0.439 | 0.312 | 0.286 | 0.254 | ||||
−24 | 400 | 473 | 511 | 557 | 573 | 574 | 403 | 561 | |||||||
0.314 | 0.277 | 0.255 | 0.235 | 0.266 | 0.238 | 0.330 | 0.249 | ||||||||
Perf. Grade | Tc,low, S(60) | (°C) | −32.7 | −30.3 | −29.5 | −29.0 | −29.1 | −28.3 | −27.5 | −32.3 | −28.6 | −27.3 | −25.8 | ||
Tc,low, m(60) | (°C) | −34.7 | −31.7 | −29.1 | −24.5 | −30.6 | −27.8 | −24.4 | −36.0 | −29.0 | −26.0 | −21.0 | |||
ΔTc,low | (°C) | 2.0 | 1.3 | −0.4 | −4.5 | 1.5 | −0.5 | −3.1 | 3.7 | 0.5 | −1.3 | −4.8 | |||
Tc,low B | (°C) | −32.7 | −30.3 B | −29.1 | −24.5 | −29.1 B | −27.8 | −24.4 | −32.3 | −28.6 B | −26.0 | −21.0 | |||
Tc,high B | (°C) | 60.9 B | 77.0 | 84.9 | 93.8 | 61.4 B | 78.1 | 87.7 | 96.3 | 61.9 B | 80.4 | 88.2 | 96.3 | ||
PG B | (°C) | 58S–28 B | 58S–28 B | 58S–28 B |
Model | Variable | Unit | PG58S–28 | 5%Lign | 10%Lign | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Un- aged | RTFO | RTFO | RTFO | Un- aged | RTFO | RTFO | RTFO | Un- aged | RTFO | RTFO | RTFO | |||
+ 20 h A | + 40 h A | + 60 h A | + 20 h A | + 40 h A | + 60 h A | + 20 h A | + 40 h A | + 60 h A | ||||||
- | Tref | (°C) | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
WLF | C1 | 13.44 | 15.94 | 20.49 | 21.07 | 13.44 | 16.55 | 20.18 | 21.78 | 12.95 | 16.52 | 20.48 | 21.07 | |
C2 | (°C) | 134.30 | 143.27 | 172.68 | 172.88 | 134.30 | 143.22 | 172.77 | 179.17 | 127.67 | 143.16 | 174.55 | 172.91 | |
2S2P1D | G00 | (MPa) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
G0 | (MPa) | 750 | 980 | 950 | 850 | 800 | 950 | 980 | 1020 | 1030 | 980 | 930 | 1020 | |
k | - | 0.270 | 0.255 | 0.250 | 0.240 | 0.270 | 0.255 | 0.250 | 0.240 | 0.270 | 0.255 | 0.250 | 0.240 | |
h | - | 0.620 | 0.600 | 0.580 | 0.570 | 0.620 | 0.600 | 0.580 | 0.570 | 0.620 | 0.600 | 0.580 | 0.570 | |
δ | - | 2.7 | 5.0 | 6.0 | 7.5 | 2.7 | 5.0 | 6.0 | 7.5 | 2.7 | 5.0 | 6.0 | 7.5 | |
τG,ref | (s) | 2.70 × 10−6 | 8.00 × 10−6 | 2.40 × 10−5 | 5.80 × 10−5 | 3.00 × 10−6 | 1.35 × 10−5 | 3.00 × 10−5 | 9.00 × 10−5 | 2.40 × 10−6 | 1.80 × 10−5 | 4.50 × 10−5 | 1.00 × 10−4 | |
β | - | 68 | 400 | 1100 | 3000 | 68 | 400 | 1100 | 3000 | 68 | 400 | 1100 | 3000 | |
- | 5.5% | 3.4% | 4.4% | 2.8% | 5.6% | 6.2% | 2.9% | 3.9% | 6.2% | 7.6% | 7.8% | 7.3% | ||
error B | - | 15.0% | 12.5% | 14.8% | 9.4% | 19.2% | 13.3% | 11.3% | 12.3% | 17.6% | 17.2% | 18.6% | 29.9% | |
(°) | 1.0 | 1.0 | 1.4 | 1.1 | 1.1 | 1.1 | 1.2 | 1.1 | 1.0 | 1.1 | 0.9 | 1.2 | ||
error B | (°) | 3.8 | 4.1 | 5.1 | 3.0 | 3.5 | 3.9 | 5.2 | 3.6 | 3.3 | 3.7 | 6.3 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco, G.; Lamothe, S.; Al-Falahat, W.; Carret, J.-C.; Carter, A. Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen. Materials 2025, 18, 2209. https://doi.org/10.3390/ma18102209
Orozco G, Lamothe S, Al-Falahat W, Carret J-C, Carter A. Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen. Materials. 2025; 18(10):2209. https://doi.org/10.3390/ma18102209
Chicago/Turabian StyleOrozco, Gabriel, Sébastien Lamothe, Wesam Al-Falahat, Jean-Claude Carret, and Alan Carter. 2025. "Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen" Materials 18, no. 10: 2209. https://doi.org/10.3390/ma18102209
APA StyleOrozco, G., Lamothe, S., Al-Falahat, W., Carret, J.-C., & Carter, A. (2025). Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen. Materials, 18(10), 2209. https://doi.org/10.3390/ma18102209