Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator
Abstract
1. Introduction
2. Device Configuration and Modeling
3. Results and Discussions
3.1. Effect of Different Hole Transport Layer Materials on the Photovoltaic Performance
3.2. Quantum Efficiency Analysis
3.3. Impact of n-Type Doping Density (ND) of the CdS-Based ETL
3.4. Impact of Defect Density (Nt) on Performance
3.5. Effect of Temperature on Cell Performance
3.6. Optimization of Back Contact Work Function
3.7. Energy Band Diagram
3.8. Dark/Indoor Simulation Consideration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, S.; Cao, Y.-L.; Li, W.-H.; Bo, Z.-S. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021, 40, 2712–2729. [Google Scholar] [CrossRef]
- Rono, N.; Ahia, C.C.; Meyer, E.L. A numerical simulation and analysis of chalcogenide BaZrS3-based perovskite solar cells utilizing different hole transport materials. Results Phys. 2024, 61, 107722. [Google Scholar] [CrossRef]
- Dambhare, M.V.; Butey, B.; Moharil, S. A review of different types of solar cells and its future trends. J. Phys. Conf. Ser. 2021, 1913, 012053. [Google Scholar] [CrossRef]
- Njema, G.G.; JKibet, J.K.; Rono, N.; Meyer, E.L. Numerical investigation of a highly efficient hole transport layer-free solid-state dye-sensitized solar cell based on N719 Dye. J. Electron. Mater. 2023, 6, 3368–3383. [Google Scholar] [CrossRef]
- Ikram, M.; Malik, R.; Raees, R.; Imran, M.; Wang, F.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustain. Energy Technol. Assess. 2022, 53, 102433. [Google Scholar] [CrossRef]
- Korir, B.K.; Kibet, J.K.; Ngari, S.M. Computational Simulation of a Highly Efficient Hole Transport-Free Dye-Sensitized Solar Cell Based on Titanium Oxide (TiO2) and Zinc Oxysulfide (ZnOS) Electron Transport Layers. J. Electron. Mater. 2021, 50, 7259–7274. [Google Scholar] [CrossRef]
- Zelai, T.; Rouf, S.A.; Mahmood, Q.; Bouzgarrou, S.; Amin, M.A.; Aljameel, A.I.; Ghrib, T.; Hegazy, H.H.; Mera, A. First-principles study of lead-free double perovskites Ga2PdX6 (X = Cl, Br, and I) for solar cells and renewable energy. J. Mater. Res. Technol. 2022, 16, 631–639. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A comprehensive review of different types of solar photovoltaic cells and their applications. Int. J. Ambient. Energy 2021, 42, 1200–1217. [Google Scholar] [CrossRef]
- Deepika; Singh, A.; Verma, U.K.; Ameen, S. Optimization of lead-free materials-based perovskite solar cell using SCAPS-1D simulation. J. Phys. Chem. Solids 2024, 186, 111817. [Google Scholar] [CrossRef]
- Rehman, U.U.; Chauhan, A.; Sahar, K.U. Exploring potential of lead-free KSn0.5Ge0.5I3 based perovskite solar cell: A combined first-principle DFT and SCAPS-1D study. Mater. Today Commun. 2024, 40, 109906. [Google Scholar] [CrossRef]
- NREL Interactive Chart of Solar Cell Efficiency Now Including ‘Hybrid Tandems’ Available Online: May 6, 2024 Emiliano Bellini. Available online: https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed on 30 December 2024).
- Lin, C. Stabilizing Organic-Inorganic Lead Halide Perovskite Solar Cells With Efficiency Beyond 20. Front. Chem. 2020, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Vineetha, P.; Nair, P.; Sruthy, S.; Saithalavi, A. Benzodithiophene-Based Copolymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells. Energy Technol. 2024, 12, 2400591. [Google Scholar] [CrossRef]
- Shoab, M.; Aslam, Z.; Zulfequar, M.; Khan, F. Numerical interface optimization of lead-free perovskite solar cells (CH3NH3SnI3) for 30% photo-conversion efficiency using SCAPS-1D. Next Mater. 2024, 4, 100200. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Gong, J.; Zhang, T.; Gao, F.; Zhang, W.-H.; Liu, M. Advances in Tin (II)-based perovskite solar cells: From material physics to device performance. Small Struct. 2022, 3, 2100102. [Google Scholar] [CrossRef]
- Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Zhang, P.; Li, M.; Chen, W.-C. A perspective on perovskite solar cells: Emergence, progress, and commercialization. Front. Chem. 2022, 10, 802890. [Google Scholar] [CrossRef]
- Maziviero, F.V.; Melo, D.M.A.; Medeiros, R.L.B.A.; Oliveira, Â.A.S.; Macedo, H.P.; Braga, R.M.; Morgado, E. Advancements and Prospects in Perovskite Solar Cells: From Hybrid to All-Inorganic Materials. Nanomaterials 2024, 14, 332. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Thakur, N.; Aly, K.A.; Mohery, M.; Ebrahium, M.M.; Kumar, P.; Sharma, P. Recent advances in BaZrS3 perovskites: Synthesis, properties, and future trends. J. Alloys Compd. 2023, 957, 170457. [Google Scholar] [CrossRef]
- Chami, R.; Lekdadri, A.; Chafi, M.; Omari, L.H.; Hlil, E.K. Sn-alloying of BaZrS3 chalcogenide perovskite as eco-friendly material for photovoltaics: First principle insight. Solid State Commun. 2023, 369, 115212. [Google Scholar] [CrossRef]
- Ortega-San-Martin, L. Introduction to Perovskites: A Historical Perspective. In Revolution of Perovskite: Synthesis, Properties and Applications; Arul, N.S., Nithya, V.D., Eds.; Springer: Singapore, 2020; pp. 1–41. [Google Scholar] [CrossRef]
- Garcia, A.; Juarez-Pérez, E.J.; Castro-Garcia, S.; Sanchez-Andujar, M.; Senaris-Rodriguez, M.A. Hybrid organic-inorganic perovskites: A spin-off of oxidic perovskites. OAJ Mater. Devices 2021, 5, 143. [Google Scholar] [CrossRef]
- Rono, N.; Merad, A.E.; Kibet, J.K.; Martincigh, B.S.; Nyamori, V.O. A theoretical investigation of the effect of the hole and electron transport materials on the performance of a lead-free perovskite solar cell based on CH3NH3SnI3. J. Comput. Electron. 2021, 20, 993–1005. [Google Scholar] [CrossRef]
- Umama, U.; Jalal, M.I.; Siddique, M.A.; Chowdhury, U.; Ul Hoque, M.I.; Rahman, J. Simulation and optimization of a CsSnI3/CsSnGeI3/Cs3Bi2I9 based triple absorber layer perovskite solar cell using SCAPS-1D. J. Phys. Chem. Solids 2024, 198, 112480. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, X.; Wang, L.; Li, S.; Xie, X.; Liu, G.; Liu, Z. High-performance wide-bandgap perovskite solar cells using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as the electron-transport layer. Chem. Phys. 2025, 588, 112488. [Google Scholar] [CrossRef]
- Eya, H.I.; Dzade, N.Y. First-Principles Investigation of Oxygen and Water Adsorption on (010), (100), and (111) Surfaces of BaZrS3 Chalcogenide Perovskite. J. Phys. Chem. C 2024, 128, 18409–18421. [Google Scholar] [CrossRef]
- Pastuszak, J.; Węgierek, P. Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef]
- Niemegeers, A.; Burgelman, M.; Decock, K.; Verschraegen, J.; Degrave, S. SCAPS Manual. Ph.D. Thesis, University of Gent, Gent, Belgium, 2014. [Google Scholar]
- Abdulmalik, M.; Danladi, E.; Boduku, P.; Tasiu, J.; Ahmad, M.; Usman, N. Modeling and Simulation of Lead-Free Perovskite Solar Cell Using SCAPS-1D. East Eur. J. Phys. 2021, 2021, 146–154. [Google Scholar] [CrossRef]
- Rahman, M.F.; Chowdhury, M.; Marasamy, L.; Mohammed, M.K.A.; Haque, M.D.; Al Ahmed, S.R.; Irfan, A.; Chaudhry, A.R.; Goumri-Said, S. Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: A numerical simulation approach by SCAPS-1D. RSC Adv. 2024, 14, 1924–1938. [Google Scholar] [CrossRef]
- Zhou, X.; Han, J. Design and simulation of C 2 N based solar cell by SCAPS-1D software. Mater. Res. Express 2020, 7, 126303. [Google Scholar] [CrossRef]
- Hafaifa, L.; Maache, M.; Allam, Z.; Zebeir, A. Simulation and performance analysis of CdTe thin film solar cell using different Cd-free zinc chalcogenide-based buffer layers. Results Opt. 2024, 14, 100596. [Google Scholar] [CrossRef]
- He, X.; Wu, L.; Hao, X.; Li, C.; Wang, W.; Feng, L.; Du, Z. The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS. Energies 2019, 12, 291. [Google Scholar] [CrossRef]
- Rono, N. An Experimental Study of Graphitic Carbon Nitride-Based Materials and Selected Metal-Based Semiconductors in Organic Solar Cells Combined with a Computational Study of Perovskite Solar Cells. Ph.D. Thesis, University of KwaZulu Natal, Durban, South Africa, 2023. [Google Scholar]
- Abubaker, S.A.; Pakhuruddin, M.Z. An Overview of Electron Transport Layer Materials and Structures for Efficient Organic Photovoltaic Cells. Energy Technol. 2024, 12, 2400285. [Google Scholar] [CrossRef]
- Azri, F.; Meftah, A.; Sengouga, N.; Meftah, A. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 2019, 181, 372–378. [Google Scholar] [CrossRef]
- Kumari, P.; Punia, U.; Sharma, D.; Srivastava, A.; Srivastava, S.K. Enhanced Photovoltaic Performance of PEDOT:PSS/Si Heterojunction Solar Cell with ZnO BSF Layer: A Simulation Study using SCAPS-1D. Silicon 2023, 15, 2099–2112. [Google Scholar] [CrossRef]
- Njema, G.G.; Kibet, J.K.; Rono, N.; Ahia, C.C. Numerical simulation of a novel high performance solid-state dye-sensitised solar cell based on N719 dye. IET Optoelectron. 2024, 18, 1–25. [Google Scholar] [CrossRef]
- Sajjad, M.; Mahmood, Q.; Singh, N.; Larsson, J.A. Ultralow Lattice Thermal Conductivity in Double Perovskite Cs2PtI6: A Promising Thermoelectric Material. ACS Appl. Energy Mater. 2020, 3, 11293. [Google Scholar] [CrossRef]
- Njema, G.G.; Kibet, J.K.; Ngari, S.M.; Rono, N. Numerical optimization of interface engineering parameters for a highly efficient HTL-free perovskite solar cell. Mater. Today Commun. 2024, 39, 108957. [Google Scholar] [CrossRef]
- Anoop, K.M.; Ahipa, T.N. Recent advancements in the hole transporting layers of perovskite solar cells. Sol. Energy 2023, 263, 111937. [Google Scholar] [CrossRef]
- Parsons, D.E.; Koutsourakis, G.; Blakesley, J.C. Performance measurements for indoor photovoltaic devices: Classification of a novel light source. APL Energy 2024, 2, 016110. [Google Scholar] [CrossRef]
- Hamadani, B. Solar Cell Performance Measurements Under Artificial Lighting Sources. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 0333–0336. [Google Scholar] [CrossRef]
- Reynaud, C.A.; Clerc, R.; Lechêne, P.B.; Hébert, M.; Cazier, A.; Arias, A.C. Evaluation of indoor photovoltaic power production under directional and diffuse lighting conditions. Sol. Energy Mater. Sol. Cells 2019, 200, 110010. [Google Scholar] [CrossRef]
Parameters | FTO [24] | CdS [33,34] | BaZrS3 [2] | Cu2O [35,36] | CuSCN [37] | P3HT [37] | PEDOT:PSS [38] |
---|---|---|---|---|---|---|---|
Bandgap, Eg (eV) | 3.50 | 2.40 | 1.90 | 2.17 | 3.40 | 1.85 | 1.60 |
Electron affinity, χ (eV) | 4.00 | 4.20 | 4.10 | 3.20 | 1.90 | 3.10 | 3.55 |
Dielectric Permittivity (relative) er | 9.00 | 10.00 | 9.60 | 7.11 | 10.00 | 3.40 | 2.58 |
CB density of states, Nc (cm–3) | 2.20 × 1018 | 2.20 × 1018 | 2.20 × 1018 | 2.02 × 1017 | 1.70 × 1019 | 1.00× 1022 | 2.10 × 1021 |
VB density of states, Nv (cm–3) | 1.80 × 1019 | 1.80 × 1019 | 1.80 × 1019 | 1.10 × 1019 | 2.50 × 10221 | 1.00 × 1022 | 2.00 × 1021 |
Electron mobility, μe (cm2 V−1 s−1) | 20.00 | 350.00 | 1.70 × 10−2 | 2.00 × 102 | 10.00 × 10−4 | 1.00 × 10−4 | 1.00 |
Hole mobility, μh (cm2 V−1 s−1) | 10.00 | 50.00 | 5.90 × 10−2 | 8.00 × 101 | 1.00 × 10−1 | 1.00 × 10−3 | 20.00 |
Density n-type doping, ND (cm–3) | 1.00 × 1019 | 1.00 × 1015 | 1.00 × 1012 | 0.00 | 0.00 | 0.00 | 0.00 |
Density p-type doping, NA (cm–3) | 0.00 | 0.00 | 1.00 × 1012 | 1.00 × 1018 | 1.00 × 1018 | 3.17 × 1013 | 3.00 × 1020 |
Defect density, Nt, (cm−3) | 0.00 | 1.00 × 1014 | 1.00 × 1015 | 1.00 × 1014 | 1.00 × 1014 | 1.00 × 1014 | 1.00 × 1014 |
Optical absorption constant A, (cm−1 eV1/2) | 5.345 × 104 | 5.345 × 104 | 5.345 × 104 | 5.345 × 104 | 5.345 × 104 | 5.345 × 104 | 5.345 × 104 |
Optical absorption constant B, (eV1/2) | 1.871 × 10−12 | 1.871 × 10−12 | 1.871 × 10−12 | 1.871 × 10−12 | 1.871 × 10−12 | 1.871 × 10−12 | 1.871 × 10−12 |
Parameter | Cu2O | CuSCN | P3HT | PEDOT:PSS |
---|---|---|---|---|
PCE (%) | 10.09 | 9.80 | 5.81 | 18.50 |
FF (%) | 23.23 | 29.58 | 25.88 | 8.90 |
Voc (V) | 3.02 | 13.74 | 2.81 | 8.86 |
Jsc (mA cm−2) | 14.37 | 2.41 | 8.00 | 23.46 |
HTL | Ir | Au | Ag | Cu | Pt |
---|---|---|---|---|---|
Cu2O | 10.73 | 10.72 | 8.90 | 10.59 | 10.73 |
CuSCN | 9.80 | 9.77 | 4.53 | 6.64 | 9.80 |
P3HT | 5.81 | 5.81 | 5.65 | 5.78 | 5.81 |
PEDOT:PSS | 18.50 | 18.22 | 16.65 | 16.66 | 18.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, E.L.; Mvokwe, S.A.; Oyedeji, O.O.; Rono, N.; Agoro, M.A. Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator. Materials 2025, 18, 186. https://doi.org/10.3390/ma18010186
Meyer EL, Mvokwe SA, Oyedeji OO, Rono N, Agoro MA. Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator. Materials. 2025; 18(1):186. https://doi.org/10.3390/ma18010186
Chicago/Turabian StyleMeyer, Edson L., Sinikiwe A. Mvokwe, Opeoluwa O. Oyedeji, Nicholas Rono, and Mojeed A. Agoro. 2025. "Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator" Materials 18, no. 1: 186. https://doi.org/10.3390/ma18010186
APA StyleMeyer, E. L., Mvokwe, S. A., Oyedeji, O. O., Rono, N., & Agoro, M. A. (2025). Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator. Materials, 18(1), 186. https://doi.org/10.3390/ma18010186