Thermo-Mechanical Optimization of Die Casting Molds Using Topology Optimization and Numerical Simulations
Abstract
:1. Introduction
2. Methods and Computational Models
2.1. Method
2.2. Thermal Topology Optimization
2.3. Thermomechanical Topology Optimization
2.4. Heat Transfer Simulations
3. Results and Discussion
3.1. Load-Bearing Analysis
3.2. Thermal Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kurtulus, K.; Bolatturk, A.; Coskun, A.; Gürel, B. An experimental investigation of the cooling and heating performance of a gravity die casting mold with conformal cooling channels. Appl. Therm. Eng. 2021, 194, 117105. [Google Scholar] [CrossRef]
- Žbontar, M.; Petrič, M.; Mrvar, P. The influence of cooling rate on microstructure and mechanical properties of alsi9cu3. Metals 2021, 11, 186. [Google Scholar] [CrossRef]
- Sivertsen, S. Die Life Prediction Using High Pressure Die Casting Simulations. 2020. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1452802&dswid=-6751 (accessed on 6 December 2023).
- Ebnesajjad, S. Fluoroplastics, Volume 2: Melt Processible Fluoropolymers—The Definitive User’s Guide and Data Book, 2nd ed.; William Andrew: Norwich, NY, USA, 2015. [Google Scholar] [CrossRef]
- Kent, R. Energy Management in Plastics Processing: Strategies, Targets, Techniques, and Tools; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Pezzin, A.; Giansetti, M.; Ferri, A. Influence of Limescale on Heating Elements Efficiency. In Proceedings of the COMSOL Conference, Rotterdam, The Netherlands, 23–25 October 2013; pp. 23–25. [Google Scholar]
- Zink, B.; Kovács, J.G. The effect of limescale on heat transfer in injection molding. Int. Commun. Heat Mass Transf. 2017, 86, 101–107. [Google Scholar] [CrossRef]
- Campbell, J. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Karakoc, C.; Dizdar, K.C.; Dispinar, D. Investigation of effect of conformal cooling inserts in high-pressure die casting of AlSi9Cu3. Int. J. Adv. Manuf. Technol. 2022, 121, 7311–7323. [Google Scholar] [CrossRef]
- Bendsoe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Dede, E. Multiphysics topology optimization of heat transfer and fluid flow systems. In Proceedings of the COMSOL Users Conference, Boston, MA, USA, 8 October 2009; Volume 715. [Google Scholar]
- Lange, F.; Hein, C.; Li, G.; Emmelmann, C. Numerical optimization of active heat sinks considering restrictions of selective laser melting. In Proceedings of the COMSOL Conference 2018 Lausanne, Lausanne, Switzerland, 22–24 October 2018. [Google Scholar]
- Haertel, J.; Engelbrecht, K.; Lazarov, B.; Sigmund, O. Topology Optimization of Thermal Heat Sinks. In Proceedings of the COMSOL Conference, Grenoble, France, 14–16 October 2015. [Google Scholar]
- Joo, Y.; Lee, I.; Kim, S.J. Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient. Int. J. Heat Mass Transf. 2017, 109, 123–133. [Google Scholar] [CrossRef]
- Lohan, D.J.; Dede, E.M.; Allison, J.T. A study on practical objectives and constraints for heat conduction topology optimization. Struct. Multidiscip. Optim. 2020, 61, 475–489. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, Y.; Ge, M.; Zhao, Y. Topology optimization of heat sink based on variable density method. Energy Rep. 2022, 8, 718–726. [Google Scholar] [CrossRef]
- Koga, A.A.; Lopes, E.C.C.; Nova, H.F.V.; Lima, C.R.; Silva, E.C.N. Development of heat sink device by using topology optimization. Int. J. Heat Mass Transf. 2013, 64, 759–772. [Google Scholar] [CrossRef]
- Yoon, G.H. Topological design of heat dissipating structure with forced convective heat transfer. J. Mech. Sci. Technol. 2010, 24, 1225–1233. [Google Scholar] [CrossRef]
- Lei, T.; Alexandersen, J.; Lazarov, B.S.; Wang, F.; Haertel, J.H.; De Angelis, S.; Sanna, S.; Sigmund, O.; Engelbrecht, K. Investment casting and experimental testing of heat sinks designed by topology optimization. Int. J. Heat Mass Transf. 2018, 127, 396–412. [Google Scholar] [CrossRef]
- Lazarov, B.S.; Sigmund, O.; Meyer, K.E.; Alexandersen, J. Experimental validation of additively manufactured optimized shapes for passive cooling. Appl. Energy 2018, 226, 330–339. [Google Scholar] [CrossRef]
- Zheng, S.; Ji, T.; Xie, G.; Sundén, B. On the improvement of the poor heat transfer lee-side regions of square cross-section ribbed channels. Numer. Heat Transf. Part A Appl. 2014, 66, 963–989. [Google Scholar] [CrossRef]
- Silvestri, A.T.; Astarita, A.; Hassanin, A.E.; Manzo, A.; Iannuzzo, U.; Iannuzzo, G.; de Rosa, V.; Acerra, F.; Squillace, A. Assessment of the mechanical properties of AlSi10Mg parts produced through selective laser melting under different conditions. Procedia Manuf. 2020, 47, 1058–1064. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
Domain | Mesh Size (mm) | |||||||
---|---|---|---|---|---|---|---|---|
2D | 0.1 | 2 × meshsize | 8 | 0.5 | 3 | 0.001 | 1 | 0.001 |
3D | 0.6 | 2 × meshsize | 6 | 0.5 | 3 | 0.001 | 1000 | 1 |
Material | [kg/m3] | k [W/(m · K)] | [J/(kg· K)] | E [GPa] | |
---|---|---|---|---|---|
Al | COMSOL | COMSOL | COMSOL | N/A | N/A |
X37CrMoV5-1 | 7716 | 28.7 | 511.5 | 171.8 | 0.3 |
AlSi10Mg | 2640 | 115 | 968 | 65 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djabraian, S.; Teichmann, F.; Müller, S. Thermo-Mechanical Optimization of Die Casting Molds Using Topology Optimization and Numerical Simulations. Materials 2024, 17, 2114. https://doi.org/10.3390/ma17092114
Djabraian S, Teichmann F, Müller S. Thermo-Mechanical Optimization of Die Casting Molds Using Topology Optimization and Numerical Simulations. Materials. 2024; 17(9):2114. https://doi.org/10.3390/ma17092114
Chicago/Turabian StyleDjabraian, Serouj, Fabian Teichmann, and Sebastian Müller. 2024. "Thermo-Mechanical Optimization of Die Casting Molds Using Topology Optimization and Numerical Simulations" Materials 17, no. 9: 2114. https://doi.org/10.3390/ma17092114
APA StyleDjabraian, S., Teichmann, F., & Müller, S. (2024). Thermo-Mechanical Optimization of Die Casting Molds Using Topology Optimization and Numerical Simulations. Materials, 17(9), 2114. https://doi.org/10.3390/ma17092114