A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, H.J.; Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Aghaee, T.; Orouji, A.A. Reconfigurable multi-band, graphene-based THz absorber: Circuit model approach. Results Phys. 2020, 16, 102855. [Google Scholar] [CrossRef]
- Xu, K.D.; Li, J.; Zhang, A.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 2020, 28, 11482–11492. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S.; Ebrahimi, A. Ultrathin, polarization-insensitive multi-band absorbers based on graphene metasurface with THz sensing application. JOSA B 2020, 37, 2372–2381. [Google Scholar] [CrossRef]
- Yao, H.; Mei, H.; Zhang, W.; Zhong, S.; Wang, X. Theoretical and experimental research on terahertz metamaterial sensor with flexible substrate. IEEE Photonics J. 2021, 14, 3700109. [Google Scholar] [CrossRef]
- Shigekawa, H.; Yoshida, S.; Takeuchi, O. Spectroscopy: Nanoscale terahertz spectroscopy. Nat. Photonics 2014, 8, 815. [Google Scholar] [CrossRef]
- Chen, H.T.; O’Hara, J.F.; Azad, A.K.; Taylor, A.J. Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev. 2011, 5, 513–533. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Sihvola, A. Metamaterials in electromagnetics. Metamaterials 2007, 1, 2–11. [Google Scholar] [CrossRef]
- Cao, T.; Wei, C.w.; Simpson, R.E.; Zhang, L.; Cryan, M.J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 2014, 4, 3955. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Koshelev, K.; Zhang, F.; Yang, Y.; Wu, J.; Kivshar, Y.; Jia, B. Full-stokes polarization perfect absorption with diatomic metasurfaces. Nano Lett. 2021, 21, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Dregely, D.; Taubert, R.; Dorfmüller, J.; Vogelgesang, R.; Kern, K.; Giessen, H. 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2011, 2, 267. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ren, Z.; Wei, J.; Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. Iscience 2022, 25, 103799. [Google Scholar] [CrossRef]
- Pan, J.; Hu, H.; Li, Z.; Mu, J.; Cai, Y.; Zhu, H. Recent progress in two-dimensional materials for terahertz protection. Nanoscale Adv. 2021, 3, 1515–1531. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, E.; Karthigeyan, K.A.; Arivarasi, A.; Papanasam, E. High-Q and FOM Dual-Band Polarization Dependent Ultra-Narrowband Terahertz Metamaterial Sensor. IEEE Photonics J. 2023, 15, 0600206. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Le, D.T.; Tong, B.T.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.Q.; Tran, M.C.; Truong, C.L.; Bui, X.K.; Vu, D.L.; Nguyen, T.Q.H. Polarization-insensitive dual-band terahertz metamaterial absorber based on asymmetric arrangement of two rectangular-shaped resonators. Optik 2021, 245, 167669. [Google Scholar] [CrossRef]
- Shan, Y.; Chen, L.; Shi, C.; Cheng, Z.; Zang, X.; Xu, B.; Zhu, Y. Ultrathin flexible dual band terahertz absorber. Opt. Commun. 2015, 350, 63–70. [Google Scholar] [CrossRef]
- Wang, B.X.; Wang, G.Z. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator. Appl. Phys. Express 2017, 10, 034301. [Google Scholar] [CrossRef]
- Wang, B.X.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818. [Google Scholar] [CrossRef]
- Wang, B.X.; Wang, G.Z.; Sang, T.; Wang, L.L. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Sci. Rep. 2017, 7, 41373. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, L.; Gu, Y.; Mehmood, M.; Gong, Y.; Srivastava, A.; Jian, L.; Venkatesan, T.; Qiu, C.W.; Hong, M. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep. 2015, 5, 15020. [Google Scholar] [CrossRef] [PubMed]
- Barreda, A.; Zou, C.; Sinelnik, A.; Menshikov, E.; Sinev, I.; Pertsch, T.; Staude, I. Tuning and switching effects of quasi-BIC states combining phase change materials with all-dielectric metasurfaces. Opt. Mater. Express 2022, 12, 3132–3142. [Google Scholar] [CrossRef]
- Wang, R.; Li, L.; Liu, J.; Yan, F.; Tian, F.; Tian, H.; Zhang, J.; Sun, W. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal. Opt. Express 2017, 25, 32280–32289. [Google Scholar] [CrossRef]
- Savo, S.; Shrekenhamer, D.; Padilla, W.J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2014, 2, 275–279. [Google Scholar] [CrossRef]
- Upender, P.; Kumar, A. Graphene-based ultra-wideband absorber for terahertz applications using hexagonal split ring resonators. Phys. Scr. 2022, 97, 065503. [Google Scholar] [CrossRef]
- Ye, L.; Zeng, F.; Zhang, Y.; Liu, Q.H. Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon 2019, 148, 317–325. [Google Scholar] [CrossRef]
- Zakir, S.; Bilal, R.M.H.; Naveed, M.A.; Baqir, M.A.; Khan, M.U.A.; Ali, M.M.; Saeed, M.A.; Mehmood, M.Q.; Massoud, Y. Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings. IEEE Photonics J. 2022, 15, 4600108. [Google Scholar] [CrossRef]
- Khodadadi, B.; Babaeinik, M.; Ghods, V.; Rezaei, P. Triple-band metamaterial perfect absorber for refractive index sensing in THz frequency. Opt. Quantum Electron. 2023, 55, 431. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Bahk, Y.M.; Kim, D.S. Dynamic terahertz plasmonics enabled by phase-change materials. Adv. Opt. Mater. 2020, 8, 1900548. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Han, S.; Rhie, J.; Kyoung, J.S.; Choi, J.W.; Park, N.; Hong, S.; Kim, B.J.; Kim, H.T.; Kim, D.S. A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano Lett. 2015, 15, 6318–6323. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, M.; Xu, H.X.; Wang, X.; Huang, W. Metamaterial absorbers: From tunable surface to structural transformation. Adv. Mater. 2022, 34, 2202509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, J.; Chen, A.; Song, Z. Vanadium dioxide-based bifunctional metamaterial for terahertz waves. IEEE Photonics J. 2019, 12, 4600109. [Google Scholar] [CrossRef]
- Driscoll, T.; Kim, H.T.; Chae, B.G.; Kim, B.J.; Lee, Y.W.; Jokerst, N.M.; Palit, S.; Smith, D.R.; Di Ventra, M.; Basov, D.N. Memory metamaterials. Science 2009, 325, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kang, L.; Mayer, T.S.; Werner, D.H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. 2016, 7, 13236. [Google Scholar] [CrossRef]
- Hu, B.; Huang, M.; Li, P.; Yang, J. Dynamically dual-tunable dual-band to four-band metamaterial absorbers based on bulk Dirac semimetal and vanadium dioxide. JOSA A 2022, 39, 383–391. [Google Scholar] [CrossRef]
- Ri, K.J.; Kim, J.S.; Kim, J.H.; Ri, C.H. Tunable triple-broadband terahertz metamaterial absorber using a single VO2 circular ring. Opt. Commun. 2023, 542, 129573. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Luo, Y.; Yi, Z.; Zhang, J.; Liu, Z.; Yang, W.; Yu, Y.; Wu, X.; Wu, P. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 2022, 24, 2527–2533. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Bakır, M.; Alkurt, F.Ö.; Altıntaş, O.; Saeed, S.R.; Taouzari, M.; Karaaslan, M.; Appasani, B.; et al. A vanadium dioxide-based metamaterial with quatrefoil and circle loaded structure on flexible polyamide substrate for terahertz applications. Front. Phys. 2022, 10, 968310. [Google Scholar] [CrossRef]
- Ma, T.; Liu, G.; Su, L.; Sun, B.; Ma, L.; Liu, H. Thermo-optical and electro-optical tunable dual-band THz absorber based on multi-layer hybrid VO2 phase transition metamaterial. Opt. Commun. 2023, 549, 129906. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Niu, J.; Hui, Q.; Mo, W.; Yao, Q.; Gong, H.; Tian, R.; Zhu, A. A dual functional tunable terahertz metamaterial absorber based on vanadium dioxide. Phys. Chem. Chem. Phys. 2024, 26, 10633–10640. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Chen, Y.; Chen, W.; Guo, H.; Wu, Q.; Li, M. Tunable broadband-narrowband and dual-broadband terahertz absorber based on a hybrid metamaterial vanadium dioxide and graphene. Micromachines 2023, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, S.; Yu, X. Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide. Opt. Commun. 2021, 501, 127358. [Google Scholar] [CrossRef]
- Lin, H.; Zou, Y.; Wu, Y.; Xiahou, X.; Zhu, H.; Zhang, X.; Wang, B.X. Study on vanadium dioxide based terahertz metamaterials with switchable functions from five-band absorption to triple-band plasmon-induced transparency. Phys. Scr. 2023, 98, 035510. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R. Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 2007, 102. [Google Scholar] [CrossRef]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef]
- Li, W.; Chang, S.j.; Wang, X.h.; Lin, L.; Bai, J.j. A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film. Optoelectron. Lett. 2014, 10, 180–183. [Google Scholar] [CrossRef]
- Mandal, P.; Speck, A.; Ko, C.; Ramanathan, S. Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition. Opt. Lett. 2011, 36, 1927–1929. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, P.; Zhou, Z.; Chen, X.; Yi, Z.; Zhu, J.; Zhang, T.; Jile, H. Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access 2020, 8, 85154–85161. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, Y.; Li, Y.; Tang, Y.; He, X. Dual-function switchable terahertz metamaterial device with dynamic tuning characteristics. Results Phys. 2023, 45, 106246. [Google Scholar] [CrossRef]
- Wong, H.; Wang, K.X.; Huitema, L.; Crunteanu, A. Active meta polarizer for terahertz frequencies. Sci. Rep. 2020, 10, 15382. [Google Scholar] [CrossRef]
- Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef]
- Song, Z.; Jiang, M.; Deng, Y.; Chen, A. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt. Commun. 2020, 464, 125494. [Google Scholar] [CrossRef]
- Liu, N.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H. Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 2008, 20, 3859–3865. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; He, Z.; Dong, S. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators. Opt. Express 2018, 26, 12838–12851. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef]
Frequency (THz) | Number of Peaks | Average Absorption Rate (%) | Tunable Range (%) | Ref. |
---|---|---|---|---|
0.1–2 | 1 | >90 | 20–99 | [40] |
5–8 | 2 | 99 | 36.2–99 | [41] |
1–9 | 3 | 99 | 30.4–99 | [42] |
0.1–12 | 3 | >90 | 20–90 | [38] |
2–5 | 4 | >97 | – | [43] |
6–10 | 4 | >88 | – | [44] |
2.5–5.5 | 4 | >96 | – | [37] |
0.1–9.5 | 5 | >98 | 7–99 | [45] |
0.1–3 | 5 | >98 | – | [46] |
0.1–10 | 6 | >98 | 4–99.9 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.; Li, X.; Mao, C.; Liu, F.; He, H.; Wu, W. A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber. Materials 2024, 17, 1757. https://doi.org/10.3390/ma17081757
Raza M, Li X, Mao C, Liu F, He H, Wu W. A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber. Materials. 2024; 17(8):1757. https://doi.org/10.3390/ma17081757
Chicago/Turabian StyleRaza, Mohsin, Xiaoman Li, Chenlu Mao, Fenghua Liu, Hongbo He, and Weiping Wu. 2024. "A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber" Materials 17, no. 8: 1757. https://doi.org/10.3390/ma17081757
APA StyleRaza, M., Li, X., Mao, C., Liu, F., He, H., & Wu, W. (2024). A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber. Materials, 17(8), 1757. https://doi.org/10.3390/ma17081757