Sputtering-Deposited Ultra-Thin Ag–Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NOx Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Ultra-Thin Ag–Cu Film
2.3. Fabrication of Ultra-Thin Ag–Cu Film Face Mask
2.4. Characterization
2.5. Antibacterial and Antiviral Activity Tests
2.6. Filtration Efficiency Test
2.7. Adhesion Fastness Test
2.8. Breathability Test
3. Results and Discussion
3.1. Antimicrobial Mechanism and Breath NOx Response
3.2. Preparation and Composition Analysis of Ultra-Thin Ag–Cu Film Face Mask
3.3. Antimicrobial Performance of Ultra-Thin Ag–Cu Film Face Mask
3.4. NOx Response of Ultra-Thin Ag–Cu Film Face Mask
3.5. Filtration Efficiency Breathability, and Durability of Ultra-Thin Ag–Cu Film Face Masks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, J.; Li, Z.; Takakuwa, M.; Inoue, D.; Hashizume, D.; Jiang, Z.; Shi, Y.; Ou, L.; Nayeem, M.O.G.; Umezu, S.; et al. Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions. Adv. Mater. 2022, 34, e2107758. [Google Scholar] [CrossRef] [PubMed]
- Karmacharya, M.; Kumar, S.; Gulenko, O.; Cho, Y.K. Advances in Facemasks during the COVID-19 Pandemic Era. ACS Appl. Bio Mater. 2021, 4, 3891–3908. [Google Scholar] [CrossRef] [PubMed]
- Olry de Labry-Lima, A.; Bermúdez-Tamayo, C.; Martinez-Olmos, J.; Martin-Ruiz, E. El uso de las mascarillas en la protección de las infecciones respiratorias: Una revisión de revisiones. Enfermedades Infecc. Microbiol. Clínica 2021, 39, 436–444. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, J.; Yang, M.; Wang, Y.; Ye, Z.; He, J.; Shen, J.; Zhou, X.; Guo, Z.; Zhang, Y.; et al. High-breathable, antimicrobial and water-repellent face mask for breath monitoring. Chem. Eng. J. 2023, 466, 143105. [Google Scholar] [CrossRef]
- SadrHaghighi, A.; Sarvari, R.; Fakhri, E.; Poortahmasebi, V.; Sedighnia, N.; Torabi, M.; Mohammadzadeh, M.; Azhiri, A.H.; Eskandarinezhad, M.; Moharamzadeh, K.; et al. Copper-Nanoparticle-Coated Melt-Blown Facemask Filter with Antibacterial and SARS-CoV-2 Antiviral Ability. ACS Appl. Nano Mater. 2023, 6, 12849–12861. [Google Scholar] [CrossRef]
- Gobikannan, T.; Pawar, S.J.; Kumar, S.K.S.; Chavhan, M.V.; Navinbhai, A.H.; Prakash, C. Importance of Antiviral and Antibacterial Face Mask Used in Pandemics: An Overview. J. Nat. Fibers 2023, 20, 2160407. [Google Scholar] [CrossRef]
- Kubo, A.L.; Rausalu, K.; Savest, N.; Zusinaite, E.; Vasiliev, G.; Viirsalu, M.; Plamus, T.; Krumme, A.; Merits, A.; Bondarenko, O. Antibacterial and Antiviral Effects of Ag, Cu and Zn Metals, Respective Nanoparticles and Filter Materials Thereof against Coronavirus SARS-CoV-2 and Influenza A Virus. Pharmaceutics 2022, 14, 2549. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, L.; Pane, A.; Annesi, F.; Losso, M.; Guglielmelli, A.; Umeton, C.; De Sio, L. Antimicrobial Effects of Chemically Functionalized and/or Photo-Heated Nanoparticles. Materials 2019, 12, 1078. [Google Scholar] [CrossRef] [PubMed]
- Janczak, K.; Kosmalska, D.; Kaczor, D.; Raszkowska-Kaczor, A.; Wedderburn, L.; Malinowski, R. Bactericidal and Fungistatic Properties of LDPE Modified with a Biocide Containing Metal Nanoparticles. Materials 2021, 14, 4228. [Google Scholar] [CrossRef] [PubMed]
- Lite, M.C.; Constantinescu, R.; Tanasescu, E.C.; Kuncser, A.; Romanitan, C.; Mihaiescu, D.E.; Lacatusu, I.; Badea, N. Phytochemical Synthesis of Silver Nanoparticles and Their Antimicrobial Investigation on Cotton and Wool Textiles. Materials 2023, 16, 3924. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Ahmadi, S.; Akhavan, O.; Luque, R. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Materials 2022, 15, 1799. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Karmacharya, M.; Joshi, S.R.; Gulenko, O.; Park, J.; Kim, G.H.; Cho, Y.K. Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Lett. 2021, 21, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Salas, B.; Beltran-Partida, E.; Cheng, N.; Salvador-Carlos, J.; Valdez-Salas, E.A.; Curiel-Alvarez, M.; Ibarra-Wiley, R. Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. Int. J. Nanomed. 2021, 16, 2689–2702. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Park, S.-J.; Ha, T.-J. Wearable nitrogen oxide gas sensors based on hydrophobic polymerized ionogels for the detection of biomarkers in exhaled breath. Sens. Actuators B Chem. 2022, 360, 131672. [Google Scholar] [CrossRef]
- Nadif, R.; Rava, M.; Decoster, B.; Huyvaert, H.; Le Moual, N.; Bousquet, J.; Siroux, V.; Varraso, R.; Pin, I.; Zerimech, F.; et al. Exhaled nitric oxide, nitrite/nitrate levels, allergy, rhinitis and asthma in the EGEA study. Eur. Respir. J. 2014, 44, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Z.; Zhang, J.; Zhao, D.; Pi, Y.; Shi, Y.; Wang, R.; Chen, P.; Li, C.; Chen, G.; et al. Biodegradable Smart Face Masks for Machine Learning-Assisted Chronic Respiratory Disease Diagnosis. ACS Sens. 2022, 7, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, M.M.; Samadinia, H.; Hajian, A.; Sheini, A.; Safaei, E.; Aboonajmi, J.; Arduini, F.; Sharghi, H.; Hashemi, P.; Khoshsafar, H.; et al. Mask assistance to colorimetric sniffers for detection of COVID-19 disease using exhaled breath metabolites. Sens. Actuators B Chem. 2022, 369, 132379. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.J.; Cooling, N.A.; Vaughan, B.; O’Donnell, K.M.; Al-Mudhaffer, M.F.; Al-Ahmad, A.; Noori, M.; Almyahi, F.; Belcher, W.J.; Dastoor, P.C. Roll-to-Roll Sputter Coating of Aluminum Cathodes for Large-Scale Fabrication of Organic Photovoltaic Devices. Energy Technol. 2015, 3, 428–436. [Google Scholar] [CrossRef]
- Stuart, B.W.; Tao, X.; Gregory, D.; Assender, H.E. Roll-to-roll patterning of Al/Cu/Ag electrodes on flexible poly(ethylene terephthalate) by oil masking: A comparison of thermal evaporation and magnetron sputtering. Appl. Surf. Sci. 2020, 505, 144294. [Google Scholar] [CrossRef]
- Gupta, P.; Karnaushenko, D.D.; Becker, C.; Okur, I.E.; Melzer, M.; Özer, B.; Schmidt, O.G.; Karnaushenko, D. Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics. Adv. Mater. Technol. 2022, 7, 2200190. [Google Scholar] [CrossRef]
- Ahrari, M.; Karahan, M.; Hussain, M.; Nawab, Y.; Khan, A.; Shirazi, A. Development of Anti-Bacterial and Anti-Viral Nonwoven Surgical Masks for Medical Applications. Tekstilec 2022, 65, 135–146. [Google Scholar] [CrossRef]
- ASTM E2149-20; Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions. ASTM: West Conshohocken, PA, USA, 2020.
- ISO 18184:2019 (E); Textiles—Determination of Antiviral Activity of Textile Products. ISO: Geneva, Switzerland, 2019.
- LaRue, R.; Morkus, P.; Laengert, S.; Rassenberg, S.; Halali, M.; Colenbrander, J.; Clase, C.; Latulippe, D.; de Lannoy, C. Navigating Performance Standards for Face Mask Materials: A Custom-Built Apparatus for Measuring Particle Filtration Efficiency. Glob. Chall. 2021, 5, 2100052. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Ermini, M.L.; Voliani, V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano 2021, 15, 6008–6029. [Google Scholar] [CrossRef] [PubMed]
- Brosius, R.; Arve, K.; Groothaert, M.; Martens, J. Adsorption chemistry of NOx on Ag/Al2O3 catalyst for selective catalytic reduction of NOx using hydrocarbons. J. Catal. 2005, 231, 344–353. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H.S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xia, P.; Wang, J.; Huang, J.; Tan, R.; Li, J.; Song, W. Antimicrobial properties of C12A7:e− nanoparticles and transparent C12A7 films. Mater. Lett. 2022, 318, 132234. [Google Scholar] [CrossRef]
- Kim, N.Y.; Leem, Y.C.; Hong, S.H.; Park, J.H.; Yim, S.Y. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. ACS Appl. Mater. Interfaces 2019, 11, 6363–6373. [Google Scholar] [CrossRef] [PubMed]
- Solís, R.R.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.J.; Bedia, J. Microwave-assisted synthesis of NH2-MIL-125(Ti) for the solar photocatalytic degradation of aqueous emerging pollutants in batch and continuous tests. J. Environ. Chem. Eng. 2021, 9, 106230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Hu, Q.; Li, J.; Yao, W.; Wang, C.; Feng, Y.; Song, W. Sputtering-Deposited Ultra-Thin Ag–Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NOx Response. Materials 2024, 17, 1574. https://doi.org/10.3390/ma17071574
Huang X, Hu Q, Li J, Yao W, Wang C, Feng Y, Song W. Sputtering-Deposited Ultra-Thin Ag–Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NOx Response. Materials. 2024; 17(7):1574. https://doi.org/10.3390/ma17071574
Chicago/Turabian StyleHuang, Xuemei, Qiao Hu, Jia Li, Wenqing Yao, Chun Wang, Yun Feng, and Weijie Song. 2024. "Sputtering-Deposited Ultra-Thin Ag–Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NOx Response" Materials 17, no. 7: 1574. https://doi.org/10.3390/ma17071574
APA StyleHuang, X., Hu, Q., Li, J., Yao, W., Wang, C., Feng, Y., & Song, W. (2024). Sputtering-Deposited Ultra-Thin Ag–Cu Films on Non-Woven Fabrics for Face Masks with Antimicrobial Function and Breath NOx Response. Materials, 17(7), 1574. https://doi.org/10.3390/ma17071574