# Charge Transport in the Presence of Correlations and Disorder: Organic Conductors and Manganites

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

_{3}Sb[Pd(dmit)

_{2}]

_{2}[12] and $\delta $′-(BEDT-TTF)

_{2}CF

_{3}CF

_{2}SO

_{3}[13], as well as in rare-earth titanates (Y,La)TiO

_{3}and (Y,Ca)TiO

_{3}[14]. However, charge transport in the Anderson insulators is observed to take place via hopping of conduction electrons among localized states in the vicinity of ${E}_{F}$. The hopping at low T usually occurs between distant localized states, so that the resistivity follows the variable range hopping (VRH) mechanism, $\rho \left(T\right)\propto \mathrm{exp}{({T}_{0}/T)}^{1/(d+1)}$. Here, ${T}_{0}\propto 1/\left({n}_{F}{\xi}^{d}\right)$ is the characteristic Mott temperature, ${n}_{F}$ is the density of localized states at ${E}_{F}$, $\xi $ is the localization length, and d is the dimensionality of the system [10]. Typical examples of such hopping conductivity have been detected in amorphous semiconductors such as Si and Ge [15] and recently in the nanocrystalline carbon thin films [16], n-type ultra-nanocrystalline diamond [17] and lower-rim-substituted calixarene derivatives in thin films [18]. With increasing temperature, the hopping among localized states of variable range usually crosses over to nearest-neighbor hopping (NNH), which has the same T dependence as the simple activated behavior, $\rho \left(T\right)\propto \mathrm{exp}({\Delta}_{\mathrm{NNH}}/T)$ [19]. Here, it is important not to confuse ${\Delta}_{\mathrm{NNH}}$ with $\Delta $, since the latter is related to a real gap in the density of states, as in Mott and CO insulators, while the former simply represents the activation energy for a hopping process in Anderson insulators that do not have a gap in the density of states.

## 2. $\mathit{\kappa}$-(BEDT-TTF)_{2}Cu_{2}(CN)_{3}

_{2}Cu

_{2}(CN)

_{3}, or $\kappa $-Cu for short. Here, BEDT-TTF stands for organic molecule bis(ethyle-nedithio)tetrathiafulvalene (Figure 1a). This material has attracted a lot of attention because it was proposed to be one of the best candidates for a quantum spin liquid with itinerant spinons [20], theoretically presented by Anderson more than 50 years ago [21]. In addition, it also possesses a rich phase diagram under pressure, featuring a Mott metal–insulator (MI) transition, unconventional superconductivity, and non-Fermi-liquid behavior [22].

_{2}(CN)

_{3}(anion) layers are alternately stacked one on another [23,24] (Figure 1b). The BEDT-TTF molecules within the organic layers are paired in dimers that form a triangular lattice with each dimer oriented approximately perpendicular to its neighbors, which is the so-called $\kappa $-type arrangement (Figure 1c)). Semiempiricial and first principle band structure calculations [25,26,27] show the cation-derived character of $\kappa $-(BEDT-TTF)

_{2}Cu

_{2}(CN)

_{3}band structure around the Fermi level, whereas copper occurs in the Cu

^{1+}oxidation state and has a filled 3d shell. In other words, electrical conduction occurs only in the organic BEDT-TTF layers. These calculations also show that each BEDT-TTF dimer carries one hole, which implies that the valence band is half-filled and that therefore the system is expected to exhibit metallic behavior. Transport experiments [28], however, indicate that $\kappa $-Cu is an insulator, which is usually ascribed to the Mott localization of conducting charge carriers within a half-filled band.

**Figure 1.**(

**a**) Schematic drawing of a BEDT-TTF molecule. (

**b**) Layered crystal structure of $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Cu${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$. The unit cell is indicated by black lines. (

**c**) View of a BEDT-TTF layer in the $bc$ plane projected along the a axis. Sulphur, carbon, copper, nitrogen, and hydrogen atoms are shown in yellow, black, orange, blue, and gray, respectively. This figure is based on data from Ref. [29].

_{2}(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ layers, more precisely in those CN groups that lie on inversion centers and are therefore crystallographically disordered. We proposed that this disorder within the insulating layers is effectively transferred to the conducting layers via strong hydrogen bonds between the ethylene groups of the BEDT-TTF molecules and disordered CN groups.

_{3}layers due to CN groups that reside on inversion centers, and this disorder is transferred to the conducting BEDT-TTF layers via hydrogen bonds. Due to longer contacts between the disordered CN groups and terminal ethylene groups of BEDT-TTF molecules, however, the degree of disorder within the conducting BEDT-TTF layers in $\kappa $-Ag is significantly lower than in $\kappa $-Cu [31,46]. On the other hand, $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$B(CN)${\phantom{\rule{-2.pt}{0ex}}}_{4}$, or shorter $\kappa $-B, contains no crystallographically disordered CN groups, since the B(CN)${\phantom{\rule{-2.pt}{0ex}}}_{4}$ anion is orientationally ordered already at room temperature [47]. This means that $\kappa $-B has the lowest level, $\kappa $-Ag has an intermediate level, and $\kappa $-Cu has the highest level of structural disorder.

## 3. $\mathit{\alpha}$-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{\mathbf{2}}$I${\phantom{\rule{-2.pt}{0ex}}}_{\mathbf{3}}$

## 4. La${\phantom{\rule{-2.pt}{0ex}}}_{\mathbf{0}.\mathbf{5}}$Ca${\phantom{\rule{-2.pt}{0ex}}}_{\mathbf{0}.\mathbf{5}}$MnO${\phantom{\rule{-2.pt}{0ex}}}_{\mathbf{3}}$

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bethe, H. Theorie der Beugung von Elektronen an Kristallen. Ann. Phys.
**1928**, 392, 55–129. [Google Scholar] [CrossRef] - Sommerfeld, A.I. Zusammenfassende Vorträge zum Hauptthema: “Die Arten chemischer Bindung und der Bau der Atome”. Zur Frage nach der Bedeutung der Atommodelle. Z. Elektrochem. Angew. Phys. Chem.
**1928**, 34, 426–430. [Google Scholar] [CrossRef] - Bloch, F. Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit. Z. Phys.
**1929**, 57, 545–555. [Google Scholar] [CrossRef] - Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys.
**1998**, 70, 1039–1263. [Google Scholar] [CrossRef] - Emery, V.J. Theory of the quasi-one-dimensional electron gas with strong “on-site” interactions. Phys. Rev. B
**1976**, 14, 2989–2994. [Google Scholar] [CrossRef] - Emery, V.J. Theory of the One-Dimensional Electron Gas. In Highly Conducting One-Dimensional Solids; Devreese, J.T., Evrard, R.P., Van Doren, V.E., Eds.; Springer: Boston, MA, USA, 1979; pp. 247–303. [Google Scholar] [CrossRef]
- McKenzie, R.H.; Merino, J.; Marston, J.B.; Sushkov, O.P. Charge ordering and antiferromagnetic exchange in layered molecular crystals of the θ type. Phys. Rev. B
**2001**, 64, 085109. [Google Scholar] [CrossRef] - Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev.
**1958**, 109, 1492–1505. [Google Scholar] [CrossRef] - Evers, F.; Mirlin, A.D. Anderson transitions. Rev. Mod. Phys.
**2008**, 80, 1355–1417. [Google Scholar] [CrossRef] - Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; International Series of Monographs on Physics; Clarendon Press: Oxford, UK, 2012. [Google Scholar]
- Shklovskii, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1984; Volume 45. [Google Scholar] [CrossRef]
- Yamashita, M.; Sato, Y.; Kasahara, Y.; Kasahara, S.; Shibauchi, T.; Matsuda, Y. Resistivity and thermal conductivity of an organic insulator β’–EtMe
_{3}Sb[Pd(dmit)_{2}]_{2}. Sci. Rep.**2022**, 12, 9187. [Google Scholar] [CrossRef] - Olejniczak, I.; Barszcz, B.; Auban-Senzier, P.; Jeschke, H.O.; Wojciechowski, R.; Schlueter, J.A. Charge-Ordering and Structural Transition in the New Organic Conductor δ′-(BEDT-TTF)
_{2}CF_{3}CF_{2}SO_{3}. J. Phys. Chem. C**2022**, 126, 1890–1900. [Google Scholar] [CrossRef] - Hameed, S.; Joe, J.; Thoutam, L.R.; Garcia-Barriocanal, J.; Yu, B.; Yu, G.; Chi, S.; Hong, T.; Williams, T.J.; Freeland, J.W.; et al. Growth and characterization of large (Y,La)TiO
_{3}and (Y,Ca)TiO_{3}single crystals. Phys. Rev. Mater.**2021**, 5, 125003. [Google Scholar] [CrossRef] - Nagels, P. Electronic transport in amorphous semiconductors. In Amorphous Semiconductors; Brodsky, M.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1979; Volume 36, pp. 113–158. [Google Scholar] [CrossRef]
- Tripathi, R.K.; Panwar, O.S.; Rawal, I.; Dixit, C.K.; Verma, A.; Chaudhary, P.; Srivastava, A.K.; Yadav, B.C. Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: Application to light-dependent resistors. J. Mater. Sci. Mater. Electron.
**2021**, 32, 2535–2546. [Google Scholar] [CrossRef] - Das, D.; Kandasami, A.; Ramachandra Rao, M.S. Realization of highly conducting n-type diamond by phosphorus ion implantation. Appl. Phys. Lett.
**2021**, 118, 102102. [Google Scholar] [CrossRef] - Leontie, L.; Danac, R.; Carlescu, A.; Doroftei, C.; Rusu, G.G.; Tiron, V.; Gurlui, S.; Susu, O. Electric and optical properties of some new functional lower-rim-substituted calixarene derivatives in thin films. Appl. Phys. A
**2018**, 124, 355. [Google Scholar] [CrossRef] - Gantmakher, V.F. Electrons and Disorder in Solids; Number 130 in Oxford Science Publications; Clarendon Press: Oxford, UK; Oxford University Press: Oxford, UK; New York, NY, USA, 2005. [Google Scholar]
- Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Maesato, M.; Saito, G. Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice. Phys. Rev. Lett.
**2003**, 91, 107001. [Google Scholar] [CrossRef] - Anderson, P. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull.
**1973**, 8, 153–160. [Google Scholar] [CrossRef] - Dressel, M.; Tomić, S. Molecular quantum materials: Electronic phases and charge dynamics in two-dimensional organic solids. Adv. Phys.
**2020**, 69, 1–120. [Google Scholar] [CrossRef] - Geiser, U.; Wang, H.H.; Carlson, K.D.; Williams, J.M.; Charlier, H.A.; Heindl, J.E.; Yaconi, G.A.; Love, B.J.; Lathrop, M.W. Superconductivity at 2.8 K and 1.5 kbar in κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}: The first organic superconductor containing a polymeric copper cyanide anion. Inorg. Chem.**1991**, 30, 2586–2588. [Google Scholar] [CrossRef] - Jeschke, H.O.; De Souza, M.; Valentí, R.; Manna, R.S.; Lang, M.; Schlueter, J.A. Temperature dependence of structural and electronic properties of the spin-liquid candidate κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. Phys. Rev. B**2012**, 85, 035125. [Google Scholar] [CrossRef] - Komatsu, T.; Matsukawa, N.; Inoue, T.; Saito, G. Realization of Superconductivity at Ambient Pressure by Band-Filling Control in κ(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. J. Phys. Soc. Jpn.**1996**, 65, 1340–1354. [Google Scholar] [CrossRef] - Kandpal, H.C.; Opahle, I.; Zhang, Y.Z.; Jeschke, H.O.; Valentí, R. Revision of Model Parameters for κ-Type Charge Transfer Salts: An Ab Initio Study. Phys. Rev. Lett.
**2009**, 103, 067004. [Google Scholar] [CrossRef] - Dressel, M.; Lazić, P.; Pustogow, A.; Zhukova, E.; Gorshunov, B.; Schlueter, J.A.; Milat, O.; Gumhalter, B.; Tomić, S. Lattice vibrations of the charge-transfer salt κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}: Comprehensive explanation of the electrodynamic response in a spin-liquid compound. Phys. Rev. B**2016**, 93, 081201. [Google Scholar] [CrossRef] - Kurosaki, Y.; Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Saito, G. Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor κ-(ET)
_{2}Cu_{2}(CN)_{3}. Phys. Rev. Lett.**2005**, 95, 177001. [Google Scholar] [CrossRef] - Yamochi, H.; Komatsu, T.; Matsukawa, N.; Saito, G.; Mori, T.; Kusunoki, M.; Sakaguchi, K. Structural aspects of the ambient-pressure BEDT-TTF superconductors. J. Am. Chem. Soc.
**1993**, 115, 11319–11327. [Google Scholar] [CrossRef] - Powell, B.J.; McKenzie, R.H. Quantum frustration in organic Mott insulators: From spin liquids to unconventional superconductors. Rep. Prog. Phys.
**2011**, 74, 056501. [Google Scholar] [CrossRef] - Hiramatsu, T.; Yoshida, Y.; Saito, G.; Otsuka, A.; Yamochi, H.; Maesato, M.; Shimizu, Y.; Ito, H.; Nakamura, Y.; Kishida, H.; et al. Design and Preparation of a Quantum Spin Liquid Candidate κ-(ET)
_{2}Ag_{2}(CN)_{3}Having a Nearby Superconductivity. Bull. Chem. Soc. Jpn.**2017**, 90, 1073–1082. [Google Scholar] [CrossRef] - Pustogow, A.; Bories, M.; Löhle, A.; Rösslhuber, R.; Zhukova, E.; Gorshunov, B.; Tomić, S.; Schlueter, J.A.; Hübner, R.; Hiramatsu, T.; et al. Quantum spin liquids unveil the genuine Mott state. Nat. Mater.
**2018**, 17, 773–777. [Google Scholar] [CrossRef] - Elsässer, S.; Wu, D.; Dressel, M.; Schlueter, J.A. Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. Phys. Rev. B**2012**, 86, 155150. [Google Scholar] [CrossRef] - Dressel, M.; Pustogow, A. Electrodynamics of quantum spin liquids. J. Phys. Condens. Matter
**2018**, 30, 203001. [Google Scholar] [CrossRef] [PubMed] - Pinterić, M.; Čulo, M.; Milat, O.; Basletić, M.; Korin-Hamzić, B.; Tafra, E.; Hamzić, A.; Ivek, T.; Peterseim, T.; Miyagawa, K.; et al. Anisotropic charge dynamics in the quantum spin-liquid candidate κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. Phys. Rev. B**2014**, 90, 195139. [Google Scholar] [CrossRef] - Čulo, M.; Tafra, E.; Basletić, M.; Tomić, S.; Hamzić, A.; Korin-Hamzić, B.; Dressel, M.; Schlueter, J. Two-dimensional variable range hopping in the spin-liquid candidate κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. Phys. B Condens. Matter**2015**, 460, 208–210. [Google Scholar] [CrossRef] - Čulo, M.; Tafra, E.; Mihaljević, B.; Basletić, M.; Kuveždić, M.; Ivek, T.; Hamzić, A.; Tomić, S.; Hiramatsu, T.; Yoshida, Y.; et al. Hall effect study of the κ-(ET)
_{2}X family: Evidence for Mott-Anderson localization. Phys. Rev. B**2019**, 99, 045114. [Google Scholar] [CrossRef] - Joung, D.; Khondaker, S.I. Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp
^{2}fraction. Phys. Rev. B**2012**, 86, 235423. [Google Scholar] [CrossRef] - Khondaker, S.I.; Shlimak, I.S.; Nicholls, J.T.; Pepper, M.; Ritchie, D.A. Two-dimensional hopping conductivity in a δ-doped GaAs/Al
_{x}Ga_{1-x}As heterostructure. Phys. Rev. B**1999**, 59, 4580–4583. [Google Scholar] [CrossRef] - Khondaker, S.; Shlimak, I.; Nicholls, J.; Pepper, M.; Ritchie, D. Crossover phenomenon for two-dimensional hopping conductivity and density-of-states near the Fermi level. Solid State Commun.
**1999**, 109, 751–756. [Google Scholar] [CrossRef] - Chuang, C.; Puddy, R.; Lin, H.D.; Lo, S.T.; Chen, T.M.; Smith, C.; Liang, C.T. Experimental evidence for Efros–Shklovskii variable range hopping in hydrogenated graphene. Solid State Commun.
**2012**, 152, 905–908. [Google Scholar] [CrossRef] - Zabrodskii, A.G. The Coulomb gap: The view of an experimenter. Philos. Mag. B
**2001**, 81, 1131–1151. [Google Scholar] [CrossRef] - Abdel-Jawad, M.; Terasaki, I.; Sasaki, T.; Yoneyama, N.; Kobayashi, N.; Uesu, Y.; Hotta, C. Anomalous dielectric response in the dimer Mott insulator κ-(BEDT-TTF)
_{2}Cu_{2}(CN)_{3}. Phys. Rev. B**2010**, 82, 125119. [Google Scholar] [CrossRef] - Shinaoka, H.; Imada, M. Single-Particle Excitations under Coexisting Electron Correlation and Disorder: A Numerical Study of the Anderson–Hubbard Model. J. Phys. Soc. Jpn.
**2009**, 78, 094708. [Google Scholar] [CrossRef] - Sasaki, T.; Oizumi, H.; Yoneyama, N.; Kobayashi, N.; Toyota, N. X-ray Irradiation-Induced Carrier Doping Effects in Organic Dimer–Mott Insulators. J. Phys. Soc. Jpn.
**2007**, 76, 123701. [Google Scholar] [CrossRef] - Pinterić, M.; Lazić, P.; Pustogow, A.; Ivek, T.; Kuveždić, M.; Milat, O.; Gumhalter, B.; Basletić, M.; Čulo, M.; Korin-Hamzić, B.; et al. Anion effects on electronic structure and electrodynamic properties of the Mott insulator κ-(BEDT-TTF)
_{2}Ag_{2}(CN)_{3}. Phys. Rev. B Rapid Commun.**2016**, 94, 161105. [Google Scholar] [CrossRef] - Yoshida, Y.; Ito, H.; Maesato, M.; Shimizu, Y.; Hayama, H.; Hiramatsu, T.; Nakamura, Y.; Kishida, H.; Koretsune, T.; Hotta, C.; et al. Spin-disordered quantum phases in a quasi-one-dimensional triangular lattice. Nat. Phys.
**2015**, 11, 679–683. [Google Scholar] [CrossRef] - Byczuk, K.; Hofstetter, W.; Vollhardt, D. Mott-Hubbard Transition versus Anderson Localization in Correlated Electron Systems with Disorder. Phys. Rev. Lett.
**2005**, 94, 056404. [Google Scholar] [CrossRef] [PubMed] - Aguiar, M.C.O.; Dobrosavljević, V.; Abrahams, E.; Kotliar, G. Critical Behavior at the Mott-Anderson Transition: A Typical-Medium Theory Perspective. Phys. Rev. Lett.
**2009**, 102, 156402. [Google Scholar] [CrossRef] - Takahashi, T.; Nogami, Y.; Yakushi, K. Charge Ordering in Organic Conductors. J. Phys. Soc. Jpn.
**2006**, 75, 051008. [Google Scholar] [CrossRef] - Yamamoto, K.; Iwai, S.; Boyko, S.; Kashiwazaki, A.; Hiramatsu, F.; Okabe, C.; Nishi, N.; Yakushi, K. Strong Optical Nonlinearity and its Ultrafast Response Associated with Electron Ferroelectricity in an Organic Conductor. J. Phys. Soc. Jpn.
**2008**, 77, 074709. [Google Scholar] [CrossRef] - Ivek, T.; Kovačević, I.; Pinterić, M.; Korin-Hamzić, B.; Tomić, S.; Knoblauch, T.; Schweitzer, D.; Dressel, M. Cooperative dynamics in charge-ordered state of α-(BEDT-TTF)
_{2}I_{3}. Phys. Rev. B**2012**, 86, 245125. [Google Scholar] [CrossRef] - Tomić, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys.
**2015**, 78, 096501. [Google Scholar] [CrossRef] - Lunkenheimer, P.; Loidl, A. Dielectric spectroscopy on organic charge-transfer salts. J. Phys. Condens. Matter
**2015**, 27, 373001. [Google Scholar] [CrossRef] - Iwai, S.; Yamamoto, K.; Kashiwazaki, A.; Hiramatsu, F.; Nakaya, H.; Kawakami, Y.; Yakushi, K.; Okamoto, H.; Mori, H.; Nishio, Y. Photoinduced Melting of a Stripe-Type Charge-Order and Metallic Domain Formation in a Layered BEDT-TTF-Based Organic Salt. Phys. Rev. Lett.
**2007**, 98, 097402. [Google Scholar] [CrossRef] - Peterseim, T.; Ivek, T.; Schweitzer, D.; Dressel, M. Electrically induced phase transition in α-(BEDT-TTF)
_{2}I_{3}: Indications for Dirac-like hot charge carriers. Phys. Rev. B**2016**, 93, 245133. [Google Scholar] [CrossRef] - Tajima, N.; Sugawara, S.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. Transport properties of massless Dirac fermions in an organic conductor α-(BEDT-TTF)
_{2}I_{3}under pressure. Europhys. Lett. (EPL)**2007**, 80, 47002. [Google Scholar] [CrossRef] - Tajima, N.; Sugawara, S.; Kato, R.; Nishio, Y.; Kajita, K. Effect of the Zero-Mode Landau Level on Interlayer Magnetoresistance in Multilayer Massless Dirac Fermion Systems. Phys. Rev. Lett.
**2009**, 102, 176403. [Google Scholar] [CrossRef] [PubMed] - Tajima, N.; Ebina-Tajima, A.; Tamura, M.; Nishio, Y.; Kajita, K. Effects of Uniaxial Strain on Transport Properties of Organic Conductor α-(BEDT-TTF)
_{2}I_{3}and Discovery of Superconductivity. J. Phys. Soc. Jpn.**2002**, 71, 1832–1835. [Google Scholar] [CrossRef] - Bender, K.; Hennig, I.; Schweitzer, D.; Dietz, K.; Endres, H.; Keller, H.J. Synthesis, Structure and Physical Properties of a Two-Dimensional Organic Metal, Di[bis(ethylenedithiolo)tetrathiofulvalene] triiodide, (BEDT-TTF)
^{+}_{2}I^{−}_{3}. Mol. Cryst. Liq. Cryst.**1984**, 108, 359–371. [Google Scholar] [CrossRef] - Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. BAND STRUCTURES OF TWO TYPES OF (BEDT-TTF)
_{2}I_{3}. Chem. Lett.**1984**, 13, 957–960. [Google Scholar] [CrossRef] - Kakiuchi, T.; Wakabayashi, Y.; Sawa, H.; Takahashi, T.; Nakamura, T. Charge Ordering in α-(BEDT-TTF)
_{2}I_{3}by Synchrotron X-ray Diffraction. J. Phys. Soc. Jpn.**2007**, 76, 113702. [Google Scholar] [CrossRef] - Beyer, R.; Dengl, A.; Peterseim, T.; Wackerow, S.; Ivek, T.; Pronin, A.V.; Schweitzer, D.; Dressel, M. Pressure-dependent optical investigations of α-(BEDT-TTF)
_{2}I_{3}: Tuning charge order and narrow gap towards a Dirac semimetal. Phys. Rev. B**2016**, 93, 195116. [Google Scholar] [CrossRef] - Moldenhauer, J.; Horn, C.; Pokhodnia, K.; Schweitzer, D.; Heinen, I.; Keller, H. FT-IR absorption spectroscopy of BEDT-TTF radical salts: Charge transfer and donor-anion interaction. Synth. Met.
**1993**, 60, 31–38. [Google Scholar] [CrossRef] - Dressel, M.; Drichko, N. Optical Properties of Two-Dimensional Organic Conductors: Signatures of Charge Ordering and Correlation Effects. Chem. Rev.
**2004**, 104, 5689–5716. [Google Scholar] [CrossRef] - Ivek, T.; Korin-Hamzić, B.; Milat, O.; Tomić, S.; Clauss, C.; Drichko, N.; Schweitzer, D.; Dressel, M. Electrodynamic response of the charge ordering phase: Dielectric and optical studies of α-(BEDT-TTF)
_{2}I_{3}. Phys. Rev. B**2011**, 83, 165128. [Google Scholar] [CrossRef] - Takano, Y.; Hiraki, K.; Yamamoto, H.; Nakamura, T.; Takahashi, T. Charge disproportionation in the organic conductor, α-(BEDT-TTF)
_{2}I_{3}. J. Phys. Chem. Solids**2001**, 62, 393–395. [Google Scholar] [CrossRef] - Alemany, P.; Pouget, J.P.; Canadell, E. Essential role of anions in the charge ordering transition of α-(BEDT-TTF)
_{2}I_{3}. Phys. Rev. B**2012**, 85, 195118. [Google Scholar] [CrossRef] - Ivek, T.; Čulo, M.; Kuveždić, M.; Tutiš, E.; Basletić, M.; Mihaljević, B.; Tafra, E.; Tomić, S.; Löhle, A.; Dressel, M.; et al. Semimetallic and charge-ordered α-(BEDT-TTF)
_{2}I_{3}: On the role of disorder in dc transport and dielectric properties. Phys. Rev. B**2017**, 96, 075141. [Google Scholar] [CrossRef] - Kino, H.; Fukuyama, H. Phase Diagram of Two-Dimensional Organic Conductors: (BEDT-TTF)
_{2}X. J. Phys. Soc. Jpn.**1996**, 65, 2158–2169. [Google Scholar] [CrossRef] - Seo, H. Charge Ordering in Organic ET Compounds. J. Phys. Soc. Jpn.
**2000**, 69, 805–820. [Google Scholar] [CrossRef] - Seo, H.; Merino, J.; Yoshioka, H.; Ogata, M. Theoretical Aspects of Charge Ordering in Molecular Conductors. J. Phys. Soc. Jpn.
**2006**, 75, 051009. [Google Scholar] [CrossRef] - Rothaemel, B.; Forró, L.; Cooper, J.R.; Schilling, J.S.; Weger, M.; Bele, P.; Brunner, H.; Schweitzer, D.; Keller, H.J. Magnetic susceptibility of α and β phases of di[bis(ethylenediothiolo)tetrathiafulvalene] tri-iodide [(BEDT-TTF)
_{2}I_{3}] under pressure. Phys. Rev. B**1986**, 34, 704–712. [Google Scholar] [CrossRef] - Tinkham, M. Introduction to Superconductivity, 2nd ed.; International Series in Pure and Applied Physics; McGraw Hill: New York, NY, USA, 1996. [Google Scholar]
- Köhler, B.; Rose, E.; Dumm, M.; Untereiner, G.; Dressel, M. Comprehensive transport study of anisotropy and ordering phenomena in quasi-one-dimensional (TMTTF)
_{2}X salts (X = PF_{6}, AsF_{6}, SbF_{6}, BF_{4}, ClO_{4}, ReO_{4}). Phys. Rev. B**2011**, 84, 035124. [Google Scholar] [CrossRef] - Dressel, M.; Grüner, G.; Pouget, J.P.; Breining, A.; Schweitzer, D. Field and frequency dependent transport in the two-dimensional organic conductor α-(BEDT-TTF)
_{2}I_{3}. J. Phys. I**1994**, 4, 579–594. [Google Scholar] [CrossRef] - Jin, S.; Tiefel, T.H.; McCormack, M.; Fastnacht, R.A.; Ramesh, R.; Chen, L.H. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science
**1994**, 264, 413–415. [Google Scholar] [CrossRef] [PubMed] - Xiong, G.C.; Li, Q.; Ju, H.L.; Mao, S.N.; Senapati, L.; Xi, X.X.; Greene, R.L.; Venkatesan, T. Giant magnetoresistance in epitaxial Nd
_{0.7}Sr_{0.3}MnO_{3-δ}thin films. Appl. Phys. Lett.**1995**, 66, 1427–1429. [Google Scholar] [CrossRef] - Dagotto, E.; Hotta, T.; Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep.
**2001**, 344, 1–153. [Google Scholar] [CrossRef] - Nagaev, E. Colossal-magnetoresistance materials: Manganites and conventional ferromagnetic semiconductors. Phys. Rep.
**2001**, 346, 387–531. [Google Scholar] [CrossRef] - Salamon, M.B.; Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys.
**2001**, 73, 583–628. [Google Scholar] [CrossRef] - Kováčik, R.; Ederer, C. Effect of Hubbard U on the construction of low-energy Hamiltonians for LaMnO
_{3}via maximally localized Wannier functions. Phys. Rev. B**2011**, 84, 075118. [Google Scholar] [CrossRef] - Nguyen, T.T.; Bach, T.C.; Pham, H.T.; Pham, T.T.; Nguyen, D.T.; Hoang, N.N. Magnetic state of the bulk, surface and nanoclusters of CaMnO3: A DFT study. Phys. B Condens. Matter
**2011**, 406, 3613–3621. [Google Scholar] [CrossRef] - Rodríguez-Carvajal, J.; Hennion, M.; Moussa, F.; Moudden, A.H.; Pinsard, L.; Revcolevschi, A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO
_{3}. Phys. Rev. B**1998**, 57, R3189–R3192. [Google Scholar] [CrossRef] - Zener, C. Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev.
**1951**, 82, 403–405. [Google Scholar] [CrossRef] - Anderson, P.W.; Hasegawa, H. Considerations on Double Exchange. Phys. Rev.
**1955**, 100, 675–681. [Google Scholar] [CrossRef] - Kubo, K.; Ohata, N. A Quantum Theory of Double Exchange. I. J. Phys. Soc. Jpn.
**1972**, 33, 21–32. [Google Scholar] [CrossRef] - Zhang, T.; Wang, X.P.; Fang, Q.F.; Li, X.G. Magnetic and charge ordering in nanosized manganites. Appl. Phys. Rev.
**2014**, 1, 031302. [Google Scholar] [CrossRef] - Ohtaki, M.; Koga, H.; Tokunaga, T.; Eguchi, K.; Arai, H. Electrical Transport Properties and High-Temperature Thermoelectric Performance of Ca
_{0.9}M_{0.1}MnO_{3}(M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem.**1995**, 120, 105–111. [Google Scholar] [CrossRef] - Jaime, M.; Salamon, M.B.; Pettit, K.; Rubinstein, M.; Treece, R.E.; Horwitz, J.S.; Chrisey, D.B. Magnetothermopower in La
_{0.67}Ca_{0.33}MnO_{3}thin films. Appl. Phys. Lett.**1996**, 68, 1576–1578. [Google Scholar] [CrossRef] - Jaime, M.; Hardner, H.T.; Salamon, M.B.; Rubinstein, M.; Dorsey, P.; Emin, D. Hall-Effect Sign Anomaly and Small-Polaron Conduction in (La
_{1-x}Gd_{x})_{0.67}Ca_{0.33}MnO_{3}. Phys. Rev. Lett.**1997**, 78, 951–954. [Google Scholar] [CrossRef] - Palstra, T.T.M.; Ramirez, A.P.; Cheong, S.W.; Zegarski, B.R.; Schiffer, P.; Zaanen, J. Transport mechanisms in doped LaMnO
_{3}: Evidence for polaron formation. Phys. Rev.**1997**, 56, 5104–5107. [Google Scholar] [CrossRef] - Chun, S.H.; Salamon, M.B.; Han, P.D. Hall effect of La
_{2/3}(Ca,Pb)_{1/3}MnO_{3}single crystals. J. Appl. Phys.**1999**, 85, 5573–5575. [Google Scholar] [CrossRef] - Millis, A.J. Lattice effects in magnetoresistive manganese perovskites. Nature
**1998**, 392, 147–150. [Google Scholar] [CrossRef] - Hotta, T.; Malvezzi, A.L.; Dagotto, E. Charge-orbital ordering and phase separation in the two-orbital model for manganites: Roles of Jahn-Teller phononic and Coulombic interactions. Phys. Rev. B
**2000**, 62, 9432–9452. [Google Scholar] [CrossRef] - Novosel, N.; Rivas Góngora, D.; Jagličić, Z.; Tafra, E.; Basletić, M.; Hamzić, A.; Klaser, T.; Skoko, Ž.; Salamon, K.; Kavre Piltaver, I.; et al. Grain-Size-Induced Collapse of Variable Range Hopping and Promotion of Ferromagnetism in Manganite La
_{0.5}Ca_{0.5}MnO_{3}. Crystals**2022**, 12, 724. [Google Scholar] [CrossRef] - Sarkar, T.; Mukhopadhyay, P.K.; Raychaudhuri, A.K.; Banerjee, S. Structural, magnetic, and transport properties of nanoparticles of the manganite Pr
_{0.5}Ca_{0.5}MnO_{3}. J. Appl. Phys.**2007**, 101, 124307. [Google Scholar] [CrossRef] - Rao, S.S.; Tripathi, S.; Pandey, D.; Bhat, S.V. Suppression of charge order, disappearance of antiferromagnetism, and emergence of ferromagnetism in Nd
_{0.5}Ca_{0.5}MnO_{3}nanoparticles. Phys. Rev. B**2006**, 74, 144416. [Google Scholar] [CrossRef] - Čulo, M.; Basletić, M.; Tafra, E.; Hamzić, A.; Tomić, S.; Fischgrabe, F.; Moshnyaga, V.; Korin-Hamzić, B. Magnetotransport properties of La
_{1-x}Ca_{x}MnO_{3}(0.52≤x≤0.75): Signature of phase coexistence. Thin Solid Films**2017**, 631, 205–212. [Google Scholar] [CrossRef] - Zhou, H.D.; Zheng, R.K.; Li, G.; Feng, S.J.; Liu, F.; Fan, X.J.; Li, X.G. Transport properties of La
_{1-x}Ca_{x}MnO_{3}(0.5≤x<1). Eur. Phys. J. B**2002**, 26, 467–471. [Google Scholar] [CrossRef] - Rösslhuber, R.; Pustogow, A.; Uykur, E.; Böhme, A.; Löhle, A.; Hübner, R.; Schlueter, J.A.; Tan, Y.; Dobrosavljević, V.; Dressel, M. Phase coexistence at the first-order Mott transition revealed by pressure-dependent dielectric spectroscopy of κ-(BEDT-TTF)
_{2}-Cu_{2}(CN)_{3}. Phys. Rev. B**2021**, 103, 125111. [Google Scholar] [CrossRef] - Pustogow, A.; McLeod, A.S.; Saito, Y.; Basov, D.N.; Dressel, M. Internal strain tunes electronic correlations on the nanoscale. Sci. Adv.
**2018**, 4, eaau9123. [Google Scholar] [CrossRef] [PubMed] - Shang, C.; Xia, Z.; Zhai, X.; Liu, D.; Wang, Y. Percolation like transitions in phase separated manganites La
_{0.5}Ca_{0.5}Mn_{1-x}Al_{x}O_{3-δ}. Ceram. Int.**2019**, 45, 18632–18639. [Google Scholar] [CrossRef] - Rogers, J.; Lee, T.H.; Pakdel, S.; Xu, W.; Dobrosavljević, V.; Yao, Y.X.; Christiansen, O.; Lanatà, N. Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning. Phys. Rev. Res.
**2021**, 3, 013101. [Google Scholar] [CrossRef] - Tafra, E.; Novosel, N.; Ivek, T.; Basletić, M.; Mihaljević, B.; Jagličić, Z.; Rivas Góngora, D.; Tomić, S.; Hamzić, A.; Fischgrabe, F. Insulating behavior driven by spin disorder and strong correlations in (La,Ca)MnO3 manganites. 2024; in preparation. [Google Scholar]

**Figure 2.**(

**a**) Temperature dependence of resistivity for $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Cu${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ on a log$\rho $-${T}^{-1/3}$ plot. Black dashed line is a fit to the 2D VRH mechanism $\rho \left(T\right)\propto \mathrm{exp}{({T}_{0}/T)}^{1/3}$. (

**b**) Temperature dependence of the special logarithmic resistivity derivative $X=-d\mathrm{ln}\rho /\left(d\mathrm{ln}T\right)=p{(C/T)}^{p}$ on a double logarithmic plot. Black dashed lines correspond to slopes $p=1/3$ for 2D VRH and $p=1$ for NNH, where p is the exponent in a general expression for resistivity $\rho \left(T\right)\propto \mathrm{exp}{(C/T)}^{p}$ (see text). The figure is based on data from Ref. [37].

**Figure 3.**(

**a**) Temperature dependence of resistivity normalized to room temperature $\rho /{\rho}_{\mathrm{RT}}$ for $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Cu${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ (dark cyan symbols), $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Ag${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ (violet symbols), and $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$B(CN)${\phantom{\rule{-2.pt}{0ex}}}_{4}$ (green symbols) on a log$\rho $ - $1/T$ plot. The data for $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Cu${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ are the same as in Figure 2a. Black dashed lines are fits to the NNH mechanism $\rho \left(T\right)\propto \mathrm{exp}({\Delta}_{\mathrm{NNH}}/T)$. (

**b**) Temperature dependence of special logarithmic resistivity derivative $X=-d\mathrm{ln}\rho /\left(d\mathrm{ln}T\right)=p{(C/T)}^{p}$ on a double logarithmic plot for $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$Ag${\phantom{\rule{-2.pt}{0ex}}}_{2}$(CN)${\phantom{\rule{-2.pt}{0ex}}}_{3}$ (violet symbols) and $\kappa $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$B(CN)${\phantom{\rule{-2.pt}{0ex}}}_{4}$ (green symbols). Black dashed lines correspond to slopes $p=1/3$ for 2D VRH and $p=1$ for NNH, where p is the exponent in a general expression for resistivity $\rho \left(T\right)\propto \mathrm{exp}{(C/T)}^{p}$ (see text). The figure is based on data from Ref. [37].

**Figure 4.**(

**a**) Layered crystal structure of $\alpha $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$I${\phantom{\rule{-2.pt}{0ex}}}_{3}$. The unit cell is indicated by black lines. (

**b**) View of a BEDT-TTF layer in the $ab$ plane projected along the c-axis. Sulfur, carbon, iodine, and hydrogen atoms are shown in yellow, black, violet, and gray, respectively. This figure is based on data from Ref. [62].

**Figure 5.**(

**a**) Temperature dependence of resistivity for $\alpha $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$I${\phantom{\rule{-2.pt}{0ex}}}_{3}$ on a log$\rho $-$1/T$ plot. Inset shows the T-evolution of the corresponding energy gap $2{\Delta}_{\mathrm{CO}}$ extracted from a more general expression for activated behavior $\rho \left(T\right)={\rho}_{0}\mathrm{exp}({\Delta}_{\mathrm{CO}}\left(T\right)/T)$ (see text). (

**b**) Decomposition of the measured resistivity for $\alpha $-(BEDT-TTF)${\phantom{\rule{-2.pt}{0ex}}}_{2}$I${\phantom{\rule{-2.pt}{0ex}}}_{3}$ (blue symbols) into two parallel conductivity channels (see text): the NNH channel (black dashed line) and the activation channel (red symbols). The NNH channel is obtained by fitting the low-T data to the expression $\rho \left(T\right)\propto \mathrm{exp}({\Delta}_{\mathrm{NNH}}/T)$. The activation channel is obtained by subtracting the NNH fit (${\rho}_{\mathrm{NNH}}$) from the measured data (${\rho}_{\mathrm{measured}}$) by using expression $1/{\rho}_{\mathrm{activation}}=1/{\rho}_{\mathrm{measured}}-1/{\rho}_{\mathrm{NNH}}$ (see text). Inset shows T-evolution of normalized energy gap $2{\Delta}_{\mathrm{CO}}$ extracted from the activation channel by using expression $\rho \left(T\right)={\rho}_{0}\mathrm{exp}({\Delta}_{\mathrm{CO}}\left(T\right)/T)$ (see text). The black dashed line in inset represents the normalized temperature dependence of the mean-field theoretical order parameter [74]. The figure is based on data from Ref. [69].

**Figure 6.**(

**a**) Perovskite crystal structure of the parent compound LaMnO${\phantom{\rule{-2.pt}{0ex}}}_{3}$. The unit cell is indicated by black lines. Lanthanum, manganese, and oxygen atoms are shown in cyan, green, and red, respectively. This figure is based on data from Ref. [84]. (

**b**) Splitting of the Mn 3D levels into ${e}_{g}$ and ${t}_{2g}$ orbitals by the crystal field created by octahedral oxygen surrounding. In the case of Mn${\phantom{\rule{-2.pt}{0ex}}}^{3+}$, there is an additional splitting due to the Jahn–Teller distortion of MnO${\phantom{\rule{-2.pt}{0ex}}}_{6}$ octahedra (see text).

**Figure 7.**(

**a**) Temperature dependence of resistivity for La${\phantom{\rule{-2.pt}{0ex}}}_{0.5}$Ca${\phantom{\rule{-2.pt}{0ex}}}_{0.5}$MnO${\phantom{\rule{-2.pt}{0ex}}}_{3}$ ceramics on a log$\rho $-${T}^{-1/4}$ plot. Black dashed line is a fit to the 3D VRH mechanism, $\rho \left(T\right)\propto \mathrm{exp}{({T}_{0}/T)}^{1/4}$. (

**b**) T dependence of the corresponding special logarithmic resistivity derivative $X=-d\mathrm{ln}\rho /\left(d\mathrm{ln}T\right)=p{(C/T)}^{p}$ on a double logarithmic plot. Black dashed line corresponds to slope $p=1/4$ for 3D VRH, where p is the exponent in a general expression for resistivity $\rho \left(T\right)\propto \mathrm{exp}{(C/T)}^{p}$ (see text). The figure is based on data from Ref. [96].

**Figure 8.**Temperature dependence of (

**a**) resistivity normalized to room temperature value $\rho /{\rho}_{\mathrm{RT}}$ and (

**b**) corresponding logarithmic resistivity derivative $d\mathrm{ln}\rho /d\mathrm{ln}(1/T)$ for La${\phantom{\rule{-2.pt}{0ex}}}_{0.5}$Ca${\phantom{\rule{-2.pt}{0ex}}}_{0.5}$MnO${\phantom{\rule{-2.pt}{0ex}}}_{3}$ ceramic samples with different grain sizes: 4000 nm (dark yellow symbols), 400 nm (dark blue symbols), and 40 nm (dark red symbols). The data for the sample with 4000 nm grains are the same as in Figure 7a. Maximum in $d\mathrm{ln}\rho /d\mathrm{ln}(1/T)$ corresponds to the CO transition (see text). Inset shows the T dependence of special logarithmic resistivity derivative $X=-d\mathrm{ln}\rho /\left(d\mathrm{ln}T\right)=p{(C/T)}^{p}$ on a double logarithmic plot. Black dashed line corresponds to slope $p=1/4$ for 3D VRH, where p is the exponent in a general expression for resistivity $\rho \left(T\right)\propto \mathrm{exp}{(C/T)}^{p}$ (see text). The figure is based on data from Ref. [96].

**Figure 9.**(

**a**) An illustration of the Mott–Anderson phase diagram (after Ref. [48]), where the correlation strength is denoted by $U/W$ and the disorder strength is denoted by $\delta $ (see text). (

**b**) A simplified illustration of the profile of density of states around ${E}_{F}$ for a Mott–Anderson insulator in the part of the phase diagram with intermediate correlation strength $U/W$ and small disorder strength $\delta $. There is a clear distinction between correlation-induced localized states, which are separated by the correlation gap at ${E}_{F}$ from the conduction band, and disorder-induced localized states that reside in vicinity of ${E}_{F}$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tafra, E.; Basletić, M.; Ivek, T.; Kuveždić, M.; Novosel, N.; Tomić, S.; Korin-Hamzić, B.; Čulo, M.
Charge Transport in the Presence of Correlations and Disorder: Organic Conductors and Manganites. *Materials* **2024**, *17*, 1524.
https://doi.org/10.3390/ma17071524

**AMA Style**

Tafra E, Basletić M, Ivek T, Kuveždić M, Novosel N, Tomić S, Korin-Hamzić B, Čulo M.
Charge Transport in the Presence of Correlations and Disorder: Organic Conductors and Manganites. *Materials*. 2024; 17(7):1524.
https://doi.org/10.3390/ma17071524

**Chicago/Turabian Style**

Tafra, Emil, Mario Basletić, Tomislav Ivek, Marko Kuveždić, Nikolina Novosel, Silvia Tomić, Bojana Korin-Hamzić, and Matija Čulo.
2024. "Charge Transport in the Presence of Correlations and Disorder: Organic Conductors and Manganites" *Materials* 17, no. 7: 1524.
https://doi.org/10.3390/ma17071524