A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations
Abstract
1. Introduction
2. Material
2.1. Binder
2.2. Alkaline Activator
2.3. Ordinary Portland Cement
3. Experiment
3.1. Test Method
3.2. Experimental Design Parameter
3.3. Preparation of Specimen
3.4. ANOVA
3.5. Second-Order Response Surface Methodology (RSM)
4. Results and Discussion
4.1. Activator to Binder Ratio
4.2. Compressive Strength
4.3. Length Change Ratio
5. Statistical Analysis
5.1. ANOVA
5.2. Second-Order RSM Model
6. Conclusions
- Higher MK content in the GP slurry necessitates an increased amount of activator to maintain fluidity. The change in the activator concentration has a less significant effect on the fluidity of the slurry.
- GP specimens with higher MK content will reduce shrinkage, particularly when the binder contains 100% MK (MK-based GP), but this is accompanied by a decrease in compressive strength. The compressive strength of GP specimens containing over 50% GGBFS was improved by increasing the NaOH concentration. GP specimens without MK or containing 50% MK with NaOH concentrations above 10 M showed compressive strengths surpassing those of OPC specimens.
- GP specimens with 100% MK content demonstrated significantly lower shrinkage compared to those with 0% and 50% MK content, as well as compared to OPC specimens. GP specimens with contents of 0% and 50% GGBFS exhibited long-term shrinkage after 28 days.
- The RSM model used in the study demonstrated high accuracy, with errors of 6.04% for compressive strength and 0.77% for shrinkage, affirming its reliability in predicting the properties of GPs based on MK content and NaOH concentration.
- The ANOVA revealed that both the MK content and NaOH concentrations are key factors affecting compressive strength, yet they exhibit no significant interaction. However, regarding shrinkage, a notable interaction between the MK content and NaOH concentration was observed, and was particularly pronounced, except for at a 50% MK content level, where their combined effect on shrinkage became significantly evident.
- This study optimizes GP parameters to obtain the qualified compressive strength and shrinkage characteristics within the optimized range of a GGBFS/MK ratio and NaOH concentration, as shown in Figure 5. Through an interpolation experiment, the compressive strength and shrinkage of the chosen interpolated specimen are 34.9 MPa and 0.287%, respectively; those values are similar to the compressive strength and shrinkage of OPC with 38.3 MPa and 0.298%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Davidovits, J. Geopolymers. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-zeolite composites: A Review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 2016, 185, 181–189. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S. Influence of slag as additive on compressive strength of fly ash-based geopolymer. J. Mater. Civ. Eng. 2007, 19, 470–474. [Google Scholar] [CrossRef]
- Dombrowski, K.; Buchwald, A.; Weil, M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 2007, 42, 3033–3043. [Google Scholar] [CrossRef]
- Davidovits, J. Why Alkali-Activated Materials (AAM) Are Not Geopolymers? GEOPOLYMER-CAMP; Geopolymer Institute: Saint-Quentin, France, 2018. [Google Scholar]
- Marvila, M.T.; de Azevedo, A.R.G.; Vieira, C.M.F. Reaction mechanisms of alkali-activated materials. Rev. IBRACON Estrut. Mater. 2021, 14. [Google Scholar] [CrossRef]
- Sasui, S.; Kim, G.; Nam, J.; Koyama, T.; Chansomsak, S. Strength and microstructure of class-c fly ash and GGBS blend geopolymer activated in NaOH & NaOH + Na2SiO3. Materials 2019, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-Y.; Lin, R.-S.; Wang, X.-Y. Effect of waste oyster shell powder on the properties of alkali-activated slag–waste ceramic geopolymers. J. Mater. Res. Technol. 2023, 22, 1768–1780. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-activated fly ash/slag cements. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Morsy, A.M.; Ragheb, A.M.; Shalan, A.H.; Mohamed, O.H. Mechanical characteristics of GGBFS/FA-based geopolymer concrete and its environmental impact. Pract. Period. Struct. Des. Constr. 2022, 27, 04022017. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 2000, 30, 791–798. [Google Scholar] [CrossRef]
- Cartwright, C.; Rajabipour, F.; Radlińska, A. Shrinkage characteristics of alkali-activated slag cements. J. Mater. Civ. Eng. 2015, 27, B4014007. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, L.; Yang, Y.; Gao, Y.; Yang, C. Effect of early age-curing methods on drying shrinkage of alkali-activated slag concrete. Materials 2019, 12, 1633. [Google Scholar] [CrossRef] [PubMed]
- Matalkah, F.; Salem, T.; Shaafaey, M.; Soroushian, P. Drying shrinkage of alkali activated binders cured at room temperature. Constr. Build. Mater. 2019, 201, 563–570. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lee, W.H.; Cheng, T.W.; Chen, W.; Li, Y.F. The length change ratio of ground granulated blast furnace slag-based geopolymer blended with magnesium oxide cured in various environments. Polymers 2022, 14, 3386. [Google Scholar] [CrossRef] [PubMed]
- Wallah, S.E. Drying shrinkage of heat-cured fly ash-based geopolymer concrete. Mod. Appl. Sci. 2009, 3, 14–21. [Google Scholar] [CrossRef]
- Duran Atiş, C.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Eng. 2015, 125, 594–600. [Google Scholar] [CrossRef]
- Sadiq, A.N.; Ariffin, M.A.M.; Anwar, M.K.; Lee, H.S.; Singh, J.K. Optimization and utilization of waste fly ash and silica fume based eco-friendly geopolymer mortar using response surface methodology. IOP Conf. Ser. Earth. Environ. Sci. 2023, 1144, 012001. [Google Scholar] [CrossRef]
- Okoye, F.N.; Durgaprasad, J.; Singh, N.B. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram. Int. 2016, 42, 3000–3006. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Shameem, M.; Ibrahim, M. Shrinkage of plain and silica fume cement concrete under hot weather. Cem. Concr. Compos. 2007, 29, 690–699. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. A New Approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 2007, 86, 1490–1512. [Google Scholar] [CrossRef]
- Karthik, S.; Mohan, K.S.R. A Taguchi Approach for optimizing design mixture of geopolymer concrete incorporating fly ash, ground granulated blast furnace slag and silica fume. Crystals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr. Build. Mater. 2017, 153, 284–293. [Google Scholar] [CrossRef]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013, 83–84, 308–314. [Google Scholar] [CrossRef]
- Vivek, S.S.; Dhinakaran, G. Durability properties of self-compacting concrete using mineral admixtures. Case study II. In Handbook of Sustainable Concrete and Industrial Waste Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 407–418. [Google Scholar]
- Elavarasan, S.; Priya, A.K.; Ajai, N.; Akash, S.; Annie, T.J.; Bhuvana, G. Experimental study on partial replacement of cement by metakaolin and GGBS. Mater. Today Proc. 2021, 37, 3527–3530. [Google Scholar] [CrossRef]
- Ilic, B.; Mitrovic, A.; Milicic, L. Thermal treatment of kaolin clay to obtain metakaolin. Hem. Ind. 2010, 64, 351–356. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive overview. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Kenne Diffo, B.B.; Elimbi, A.; Cyr, M.; Dika Manga, J.; Tchakoute Kouamo, H. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 2015, 3, 130–138. [Google Scholar] [CrossRef]
- Khaled, Z.; Mohsen, A.; Soltan, A.; Kohail, M. Optimization of kaolin into metakaolin: Calcination conditions, mix design and curing temperature to develop alkali activated binder. Ain Shams Eng. J. 2023, 14, 102142. [Google Scholar] [CrossRef]
- Palomo, A.; Blanco-Varela, M.T.; Granizo, M.L.; Puertas, F.; Vazquez, T.; Grutzeck, M.W. Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res. 1999, 29, 997–1004. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W. A Novel Waterproof, Fast setting and high early strength repair material derived from metakaolin geopolymer. Constr. Build. Mater. 2016, 124, 69–73. [Google Scholar] [CrossRef]
- Albidah, A.; Abadel, A.; Alrshoudi, F.; Altheeb, A.; Abbas, H.; Al-Salloum, Y. Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures. J. Mater. Res. Technol. 2020, 9, 10732–10745. [Google Scholar] [CrossRef]
- Li, Y.F.; Hao, G.W.; Syu, J.Y.; Chen, B.Y.; Lee, W.H.; Tsai, Y.K. Use of geopolymer and carbon fiber-reinforced polymer for repairing reinforced concrete deck soffit. Materials 2023, 16, 4459. [Google Scholar] [CrossRef]
- Park, Y.; Abolmaali, A.; Kim, Y.H.; Ghahremannejad, M. Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing Sand. Constr. Build. Mater. 2016, 118, 43–51. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mostafa, R.R.; Mohammed, A.; Sihag, P.; Qadir, A. Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput. Appl. 2023, 35, 2909–2926. [Google Scholar] [CrossRef]
- Su, M.; Zhong, Q.; Peng, H. Regularized multivariate polynomial regression analysis of the compressive strength of slag-metakaolin geopolymer pastes based on experimental data. Constr. Build. Mater. 2021, 303, 124529. [Google Scholar] [CrossRef]
- Ardhira, P.J.; Sathyan, D.A. Comparative study of normal and self-compacting geopolymer mortar and its strength prediction using tensor flow approach. Mater. Today Proc. 2022, 65, 1046–1055. [Google Scholar] [CrossRef]
- ASTM C928/C928M-20a; Standard Specification for Packaged, Dry, Rapid-Hardening Cementitious Materials for Concrete Repairs. ASTM: West Conshohocken, PA, USA, 2020.
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM: West Conshohocken, PA, USA, 2020.
- ASTM C230/C230M-20; Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM C157-75; Standard Test Method for Length Change of Hardened Cement Mortar and Concrete. ASTM: West Conshohocken, PA, USA, 2017.
Composition | SiO2 | Al2O3 | CaO | MgO | Fe2O3 | TiO2 | Others |
---|---|---|---|---|---|---|---|
GGBFS (%) | 32.43 | 9.96 | 47.32 | 5.16 | 0.69 | 0.83 | 3.61 |
MK (%) | 58.15 | 38.34 | 0.19 | 0.00 | 0.90 | 1.66 | 0.76 |
Specimen | Binder | Alkaline Activator | |||
---|---|---|---|---|---|
MK (wt.%) | GGBFS (wt.%) | NaOH (M) | SiO2/Na2O (wt.%) | Al2O3/SiO2 (wt.%) | |
6 M-MK0 | 0 | 100 | 6 | 128 | 2 |
6 M-MK50 | 50 | 50 | 6 | ||
6 M-MK100 | 100 | 0 | 6 | ||
10 M-MK0 | 0 | 100 | 10 | ||
10 M-MK50 | 50 | 50 | 10 | ||
10 M-MK100 | 100 | 0 | 10 | ||
14 M-MK0 | 0 | 100 | 14 | ||
14 M-MK50 | 50 | 50 | 14 | ||
14 M-MK100 | 100 | 0 | 14 |
Specimen | Activator/Binder Ratio | Compressive Strength (MPa) | Length Change Ratio (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Average | 1 | 2 | 3 | Average | ||
6 M-MK0 | 0.36 | 81.8 | 93.6 | 99.2 | 122.2 | 99.2 | −0.539 | −0.512 | −0.51 | −0.520 |
6 M-MK50 | 0.81 | 22.9 | 29.6 | 29.7 | 36.1 | 29.6 | −0.408 | −0.384 | −0.367 | −0.386 |
6 M-MK100 | 1.28 | 9.2 | 9.5 | 10.3 | 10.6 | 9.9 | −0.156 | −0.152 | −0.151 | −0.153 |
10 M-MK0 | 0.38 | 110.3 | 116.0 | 119.5 | 128.6 | 118.6 | −0.478 | −0.478 | −0.471 | −0.476 |
10 M-MK50 | 0.78 | 52.3 | 53.2 | 54.1 | 59.4 | 54.8 | −0.514 | −0.496 | −0.444 | −0.485 |
10 M-MK100 | 1.33 | 30.3 | 31.2 | 32.4 | 34.1 | 32.2 | −0.248 | −0.231 | −0.213 | −0.231 |
14 M-MK0 | 0.39 | 125.0 | 128.7 | 137.5 | 149.2 | 135.1 | −0.472 | −0.452 | −0.441 | −0.455 |
14 M-MK50 | 0.80 | 51.5 | 51.9 | 53.4 | 61.5 | 54.6 | −0.535 | −0.523 | −0.385 | −0.481 |
14 M-MK100 | 1.33 | 29.0 | 30.3 | 30.4 | 30.7 | 30.0 | −0.271 | −0.269 | −0.259 | −0.266 |
OPC | - | 34.2 | 38.3 | 38.5 | 42.2 | 38.3 | −0.302 | −0.297 | −0.295 | −0.298 |
Source of Variations | Sum of Squares | DoF | Mean Square | F-Value | p-Value | Critical Value |
---|---|---|---|---|---|---|
MK Contain (%) | 57,427.14 | 2 | 28,713.57 | 490.36 | 6.00 × 10−22 | 3.35 |
NaOH (M) | 4992.03 | 2 | 2496.01 | 42.63 | 4.42 × 10−9 | 3.35 |
MK contain × NaOH | 470.37 | 4 | 117.59 | 2.01 | 1.22 × 10−1 | 2.73 |
Error | 1581.03 | 27 | 58.56 | |||
Total | 64,470.56 | 35 |
Source of Variations | Sum of Squares | DoF | Mean Square | F-Value | p-Value | Critical Value |
---|---|---|---|---|---|---|
MK Contain (%) | 0.3812 | 2 | 0.1906 | 178.52 | 1.35 × 10−12 | 3.555 |
NaOH (M) | 0.0126 | 2 | 0.0063 | 5.90 | 1.07 × 10−2 | 3.555 |
MK contain × NaOH | 0.0332 | 4 | 0.0083 | 7.78 | 7.99 × 10−4 | 2.928 |
Error | 0.0192 | 18 | 0.0011 | |||
Total | 0.4460 | 26 |
Source of Variation | Sum of Squares | DoF | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
NaOH concentration | MK0 | 0.0034 | 2 | 0.0034 | 19.74 | 2.29 × 10−3 |
MK50 | 0.0188 | 2 | 0.0094 | 3.23 | 1.12 × 10−1 | |
MK100 | 0.0202 | 2 | 0.0101 | 85.16 | 3.94 × 10−5 | |
MK content | 6 M | 0.2077 | 2 | 0.1039 | 449.09 | 2.92 × 10−7 |
10 M | 0.1244 | 2 | 0.0622 | 113.34 | 1.71 × 10−5 | |
14 M | 0.0823 | 2 | 0.0412 | 16.99 | 3.38 × 10−3 |
Compressive Strength | Length Change Ratio | |
---|---|---|
β0 | 21.2 | 4.25 × 10−1 |
β1 | −1.74 | −8.88 × 10−4 |
β2 | 16.28 | 1.97 × 10−2 |
β3 | 1.01 × 10−2 | 4.02 × 10−5 |
β4 | −5.85 × 10−1 | −1.25 × 10−3 |
β5 | −2.23 × 10−2 | 2.22 × 10−4 |
Test | Prediction | Experiment | Error |
---|---|---|---|
Compressive strength at 28 days | 32.8 MPa | 34.9 MPa | 6.04% |
Shrinkage at 28 days | 0.289% | 0.287% | 0.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Lee, W.-H.; Cheng, T.-W.; Li, Y.-F. A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations. Materials 2024, 17, 1181. https://doi.org/10.3390/ma17051181
Chen Y-C, Lee W-H, Cheng T-W, Li Y-F. A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations. Materials. 2024; 17(5):1181. https://doi.org/10.3390/ma17051181
Chicago/Turabian StyleChen, Yen-Chun, Wei-Hao Lee, Ta-Wui Cheng, and Yeou-Fong Li. 2024. "A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations" Materials 17, no. 5: 1181. https://doi.org/10.3390/ma17051181
APA StyleChen, Y.-C., Lee, W.-H., Cheng, T.-W., & Li, Y.-F. (2024). A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations. Materials, 17(5), 1181. https://doi.org/10.3390/ma17051181