Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Geopolymer Samples
2.3. Characterization Techniques
3. Results and Discussion
3.1. Effect of Wollastonite Loading on Mechanical Performance
3.2. Analysis of Microstructure and Phase Composition
3.3. Thermogravimetric Analysis (TGA)
3.4. The Physical Role of Wollastonite in the Hybrid WK-Geopolymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alshaaer, M.; El-Eswed, B.; Yousef, R.I.; Khalili, F.; Rahier, H. Development of functional geopolymers for water purification, and construction purposes. J. Saudi Chem. Soc. 2012, 20, S85–S92. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 2009, 161, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 2007, 42, 3073–3082. [Google Scholar] [CrossRef]
- Yu, G.; Jia, Y. Microstructure and Mechanical Properties of Fly Ash-Based Geopolymer Cementitious Composites. Minerals 2022, 12, 853. [Google Scholar] [CrossRef]
- Wang, A.; Fang, Y.; Zhou, Y.; Wang, C.; Dong, B.; Chen, C. Green Protective Geopolymer Coatings: Interface Characterization, Modification and Life-Cycle Analysis. Materials 2022, 15, 3767. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef]
- Walbrück, K.; Maeting, F.; Witzleben, S.; Stephan, D. Natural Fiber-Stabilized Geopolymer Foams—A Review. Materials 2020, 13, 3198. [Google Scholar] [CrossRef]
- Alshaaer, M.; Alkafawein, J.; Al-Fayez, Y.; Fahmy, T.; Hamaideh, A. Synthesis of geopolymer cement using natural resources for green construction materials. In Recent Advances in Earth Sciences, Environment and Development, Proceedings of the 8th International Conference on Engineering Mechanics, Structures, Engineering Geology (EMESEG’15), Konya, Turkey, 20–22 May 2015; WSEAS Press: Houston, TX, USA, 2015. [Google Scholar]
- Alshaaer, M.; Slaty, F.; Khoury, H.; Rahier, H.; Wastiels, J. Development of low-cost functional geopolymeric materials. in Advances for materials science for environmental and nuclear technology. Adv. Mater. Sci. Environ. Nucl. Technol. 2010, 222, 159–167. [Google Scholar]
- Rocha, F.; Costa, C.; Hajjaji, W.; Andrejkovičová, S.; Moutinho, S.; Cerqueira, A. Properties Improvement of Metakaolin-Zeolite-Diatomite-Red Mud Based Geopolymers. In Proceedings of the 14th International Congress for Applied Mineralogy (ICAM2019), Belgorod, Russia, 23–27 September 2019. [Google Scholar]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; Liao, L.; Mei, L.; Zhang, F.; Zhang, L.; Li, S.; Lv, G. A bifunctional hierarchical porous kaolinite geopolymer with good performance in thermal and sound insulation. Constr. Build. Mater. 2020, 251, 118888. [Google Scholar] [CrossRef]
- Pławecka, K.; Przybyła, J.; Korniejenko, K.; Lin, W.-T.; Cheng, A.; Łach, M. Recycling of Mechanically Ground Wind Turbine Blades as Filler in Geopolymer Composite. Materials 2021, 14, 6539. [Google Scholar] [CrossRef] [PubMed]
- Subaer, S.; Haris, A.; Nurhayati, N.; Andi, I.; Ekaputri, J.J. The influence of Si: Al and Na: Al on the physical and microstructure characters of geopolymers based on metakaolin. Mater. Sci. Forum 2016, 841, 170–177. [Google Scholar] [CrossRef]
- Singh, N.B.; Saxena, S.K.; Kumar, M.; Rai, S. Geopolymer cement: Synthesis, Characterization, Properties and applications. Mater. Today Proc. 2019, 15, 364–370. [Google Scholar] [CrossRef]
- Bagci, C.; Kutyla, G.P.; Kriven, W.M. Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative. Ceram. Int. 2017, 43, 14784–14790. [Google Scholar] [CrossRef]
- Alves, Z.; Senff, L.; Sakkas, K.; Yakoumis, I.; Labrincha, J.A.; Novais, R.M. Synthesis of geopolymer composites using bauxite residue-based spheres as aggregate: Novel and eco-friendly strategy to produce lightweight building materials. Cem. Concr. Compos. 2024, 148, 105478. [Google Scholar] [CrossRef]
- Taki, K.; Sharma, S. Synthesis of Bentonite Clay-Based Geopolymer and Its Application in the Treatment of Expansive Soil. In Advances in Computer Methods and Geomechanics; Springer: Singapore, 2020. [Google Scholar]
- Wattanasiriwech, S.; Nurgesang, F.A.; Wattanasiriwech, D.; Timakul, P. Characterisation and properties of geopolymer composite part 1: Role of mullite reinforcement. Ceram. Int. 2017, 43, 16055–16062. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, H.; Yuan, P.; Li, Y.; Wang, Q.; Deng, L.; Liu, D. Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination. Appl. Clay Sci. 2020, 185, 105375. [Google Scholar] [CrossRef]
- Li, W.; Xu, J. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A 2009, 513–514, 145–153. [Google Scholar] [CrossRef]
- Natali, A.; Manzi, S.; Bignozzi, M. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng. 2011, 21, 1124–1131. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Sun, P.; Wu, H.-C. Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem. Concr. Compos. 2008, 30, 29–36. [Google Scholar] [CrossRef]
- Zhao, Q.; Nair, B.; Rahimian, T.; Balaguru, P. Novel geopolymer based composites with enhanced ductility. J. Mater. Sci. 2007, 42, 3131–3137. [Google Scholar] [CrossRef]
- Alshaaer, M. Synthesis and characterization of self-healing geopolymer composite. Constr. Build. Mater. 2020, 245, 118432. [Google Scholar] [CrossRef]
- Rashad, A.M. A brief on high-volume Class F fly ash as cement replacement—A guide for Civil Engineer. Int. J. Sustain. Built Environ. 2015, 4, 278–306. [Google Scholar] [CrossRef]
- Saravari, O.; Waipunya, H.; Chuayjuljit, S. Effects of ethylene octene copolymer and ultrafine wollastonite on the properties and morphology of polypropylene-based composites. J. Elastomers Plast. 2014, 46, 175–186. [Google Scholar] [CrossRef]
- Tiggemann, H.M.; Tomacheski, D.; Celso, F.; Ribeiro, V.F.; Nachtigall, S.M.B. Use of wollastonite in a thermoplastic elastomer composition. Polym. Test. 2013, 32, 1373–1378. [Google Scholar] [CrossRef]
- Alshaaer, M. Microstructural characteristics and long-term stability of wollastonite-based chemically bonded phosphate ceramics. Int. J. Appl. Ceram. Technol. 2020, 18, 319–331. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Hassan, A.; Mohamad, Z.; Othman, N. Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polym. Compos. 2020, 41, 395–429. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, J.; Yu, Q.; Xu, M.; Luo, Y. Hybrid Effect of Wollastonite Fiber and Carbon Fiber on the Mechanical Properties of Oil Well Cement Pastes. Adv. Mater. Sci. Eng. 2020, 2020, 4618035. [Google Scholar] [CrossRef]
- Bong, S.H.; Nematollahi, B.; Xia, M.; Nazari, A.; Sanjayan, J. Properties of one-part geopolymer incorporating wollastonite as partial replacement of geopolymer precursor or sand. Mater. Lett. 2020, 263, 127236. [Google Scholar] [CrossRef]
- Alshaaer, M.; Cuypers, H.; Mosselmans, G.; Rahier, H.; Wastiels, J. Evaluation of a low temperature hardening Inorganic Phosphate Cement for high-temperature applications. Cem. Concr. Res. 2011, 41, 38–45. [Google Scholar] [CrossRef]
- Alshaaer, M. Synthesis, Characterization, and Recyclability of a Functional Jute-Based Geopolymer Composite. Front. Built Environ. 2021, 7, 631307. [Google Scholar] [CrossRef]
- Alshaaer, M.; Alanazi, A.O.S.; Absa, I.M.I. Use of Sulfur Waste in the Production of Metakaolin-Based Geopolymers. Sustainability 2023, 15, 13608. [Google Scholar] [CrossRef]
- Khatib, K.; Lahmyed, L.; El Azhari, M. Synthesis, Characterization, and Application of Geopolymer/TiO2 Nanoparticles Composite for Efficient Removal of Cu(II) and Cd(II) Ions from Aqueous Media. Minerals 2022, 12, 1445. [Google Scholar] [CrossRef]
- Nesse, W.D. Introduction to Mineralogy; Oxford University Press: New York, NY, USA, 2000; pp. 254–255. [Google Scholar]
- Dong, J.; Li, C.; Liu, H.; Zhang, L.; Liu, J. Investigating the mechanical property and reaction mechanism of geopolymers cement with red Pisha Sandstone. Constr. Build. Mater. 2019, 201, 641–650. [Google Scholar] [CrossRef]
- Palakurthy, S.; Samudrala, R.K. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng. C 2019, 98, 109–117. [Google Scholar] [CrossRef] [PubMed]
Oxide | wt.% |
---|---|
MnO | 0.34 |
Cr2O3 | 0.45 |
CaO | 1.11 |
K2O | 0.12 |
P2O5 | 0.93 |
Fe2O3 | 9.37 |
Al2O3 | 22.56 |
SiO2 | 38.41 |
TiO2 | 14.22 |
Loss on Ignition | 13.10 |
ID | (Weight Ratios per 100 g of Metakaolin) | ||||
---|---|---|---|---|---|
Metakaolin | Wollastonite | Na2SiO3 Solution | NaOH | H2O | |
GW0 | 100 | 0 | 100 | 25 | 48 |
GW12.5 | 100 | 12.5 | 100 | 25 | 48 |
GW25 | 100 | 25 | 100 | 25 | 48 |
GW50 | 100 | 50 | 100 | 25 | 48 |
Precursor | Phase | Phase % | Crystal Structure | a (Å) | b (Å) | c (Å) | V (Å3) | Crystallite Size (Å) *** |
---|---|---|---|---|---|---|---|---|
Kaolinite | Al2Si2O5(OH)4 | 89.2 | Triclinic * | 5.15 | 8.94 | 7.40 | 329.4 | 519 |
Anatase TiO2 | 10.8 | Tetragonal | 3.78 | - | 9.51 | 135.9 | 425 | |
Wollastonite | CaSiO3 | 100 | Monoclinic ** | 15.42 | 7.32 | 7.07 | 794.5 | 4479 |
Series | Degree of Crystallinity | Crystalline Phase Composition | Phase% | Crystal System | Unit cell size (Å3) | Crystalline Size (Å) |
---|---|---|---|---|---|---|
GW0 | 42% | Al1.55·Na1.55·O4·Si0.45 | 100 | orthorhombic | 765.6 | 2820 |
GW12.5 | 12% | Ca5(SiO4)2(OH)2 | 37.1 | monoclinic | 486.1 | 1081 |
CaSiO3 | 62.9 | monoclinic | 794.3 | 3430 | ||
GW25 | 20% | Ca5(SiO4)2(OH)2 | 29.6 | monoclinic | 486.1 | 2691 |
CaSiO3 | 70.4 | monoclinic | 794.3 | 3699 | ||
GW50 | 49.5% | Ca5(SiO4)2(OH)2 | 31.9 | monoclinic | 486.1 | 522 |
CaSiO3 | 68.1 | monoclinic | 794.3 | 3264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshaaer, M.; Alanazi, A.O.S. Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers. Materials 2024, 17, 4338. https://doi.org/10.3390/ma17174338
Alshaaer M, Alanazi AOS. Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers. Materials. 2024; 17(17):4338. https://doi.org/10.3390/ma17174338
Chicago/Turabian StyleAlshaaer, Mazen, and Abdulaziz O. S. Alanazi. 2024. "Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers" Materials 17, no. 17: 4338. https://doi.org/10.3390/ma17174338
APA StyleAlshaaer, M., & Alanazi, A. O. S. (2024). Synthesis and Characterization of Novel Hybrid Wollastonite–Metakaolin-Based Geopolymers. Materials, 17(17), 4338. https://doi.org/10.3390/ma17174338