Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epifani, M.; Comini, E.; Diaz, R.; Arbiol, J.; Siciliano, P.; Sberveglieri, G.; Morante, J.R. Oxide nanopowders from the low-temperature processing of metal oxide sols and their application as gas-sensing materials. Sens. Actuators B Chem. 2006, 118, 105–109. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B Adv. 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Meng, F.J.; Xin, R.F.; Li, S.X. Metal Oxide Heterostructures for Improving Gas Sensing Properties: A Review. Materials 2023, 16, 263. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Cao, S.; Huang, Z.; Yang, D.; Zhang, G. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials 2021, 14, 4263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.W.; Wu, J.J.; Zeng, D.W.; Song, W.L. The Preparation of WO3/Graphene Nanocomposites with the Wet Chemicial Method and Their Photo-activated Tolune-sensing Property at Room Temperature. J. South Chin. Norm. Univ. Nat. Sci. Ed. 2022, 54, 18–24. [Google Scholar]
- Mishra, S.; Ghanshyam, C.; Ram, N.; Bajpai, R.P.; Bedi, R.K. Detection mechanism of metal oxide gas sensor under UV radiation. Sens. Actuators B Chem. 2004, 97, 387–390. [Google Scholar] [CrossRef]
- Gulyaev, A.M.; Le, V.V.; Sarach, O.B.; Mukhina, O.B. Light-enhanced sensitivity of SnO2−x gas sensors. Semiconductor 2008, 42, 726–730. [Google Scholar] [CrossRef]
- Gu, D.; Li, X.G.; Wang, H.S.; Li, M.Z.; Xi, Y.; Chen, Y.P.; Wang, J.; Rumyntseva, M.N.; Gaskov, A.M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B Chem. 2018, 256, 992–1000. [Google Scholar] [CrossRef]
- Cui, J.B.; Shi, L.Q.; Xie, T.F.; Wang, D.J.; Lin, Y.H. UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B Chem. 2016, 227, 220–226. [Google Scholar] [CrossRef]
- Nguyet, T.T.; Le, D.T.T.; Duy, N.V.; Xuan, C.T.; Ingebrandt, S.; Vu, X.T.; Hoa, N.D. A sigh-performance hydrogen gas sensor based on Ag/Pd nanoparticle-functionalized ZnO nanoplates. RSC Adv. 2023, 13, 13017–13029. [Google Scholar] [CrossRef]
- Tien, L.C.; Sadik, P.W.; Norton, D.P.; Voss, L.F.; Pearton, S.J.; Wang, H.T.; Kang, B.S.; Ren, F.; Jun, J.; Lin, J. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett. 2005, 87, 222106. [Google Scholar] [CrossRef]
- Kyle, R.R.; Yang, W.R.; Ringer, S.; Braet, F. Toward Ubiquitous Environmental Gas Sensors-Capitalizing on the Promise of Graphene. Environ. Sci. Technol. 2010, 44, 1167–1176. [Google Scholar]
- Dan, Y.P.; Lu, Y.; Kybert, N.J.; Luo, Z.T.; Charlie, A.T.J. Intrinsic Response of Graphene Vapor Sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials 2022, 15, 1012. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.H.; Adam, S.; Sarma, S.D. Carrier Transport in Two-Dimensional Graphene Layers. Phys. Rev. Lett. 2007, 98, 186806. [Google Scholar] [CrossRef] [PubMed]
- Castro, N.A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Bharath, S.P.; Kim, J.Y.; Pawar, K.K.; Kim, H.W.; Kim, S.S. N-Doped Graphene and Its Derivatives as Resistive Gas Sensors: An Overview. Chemosensors 2023, 11, 334. [Google Scholar] [CrossRef]
- Bong, G.C.; HoSeok, P.; Tae, J.P.; Min, H.Y.; Joon, S.K.; Jang, S.Y.; Heo, N.S.; Lee, S.Y.; Kong, J.; Hong, W.H. Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors. ACS Nano 2010, 4, 2910–2918. [Google Scholar]
- Rad, A.S. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci. 2016, 645, 6–12. [Google Scholar] [CrossRef]
- Jirickova, A.; Jankovsky, O.; Sofer, Z.; Sedmidubsky, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Spizzirri, P.G.; Arsat, R.; Yu, J.; du Plessis, J.; Dubin, S.; Kaner, R.B.; Kalantar-Zadeh, K.; Wlodarski, W. Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. J. Phys. Chem. C 2010, 114, 13796–13801. [Google Scholar] [CrossRef]
- Huang, Q.W.; Zhou, P.; Zeng, D.W.; Song, W.L. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature. J. South Chin. Norm. Univ. Nat. Sci. Ed. 2021, 53, 23–27. [Google Scholar]
- Huang, Q.; Zeng, D.; Li, H.; Xie, C. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 2012, 4, 5651–5658. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zeng, D.; Tian, S.; Xie, C. Synthesis of defect graphene and its application for room temperature humidity sensing. Mater. Lett. 2012, 83, 76–79. [Google Scholar] [CrossRef]
- Rodriguez-Felix, F.; Del-Toro-Sánchez, C.L.; Cinco-Moroyoqui, F.J.; Juarez, J.; Ruiz-Cruz, S.; Lopez-Ahumada, G.A.; Carvajal-Millan, E.; Castro-Enriquez, D.D.; Barreras-Urbina, C.G.; Tapia-Hernandez, J.A. Preparation and Characterization of Quercetin-Loaded Zein Nanoparticles by Electrospraying and Study of In Vitro Bioavailability. J. Food Sci. 2019, 84, 2883–2897. [Google Scholar] [CrossRef]
- Sahu, J.; Kumar, S.; Vata, V.S.; Alvi, P.A.; Dalala, B.; Kumar, S.; Dalela, S. Lattice defects and oxygen vacancies formulated ferromagnetic, luminescence, structural properties and band-gap tuning in Nd3+ substituted ZnO nanoparticles. J. Lumin. 2022, 243, 118673. [Google Scholar] [CrossRef]
- Haghshenas, S.S.P.; Nemati, A.; Simchi, A.; Kim, C.U. Dispute in photocatalytic and photoluminescence behavior in ZnO/graphene oxide core-shell nanoparticles. Mater. Lett. 2019, 240, 117–120. [Google Scholar] [CrossRef]
- Karagoz, S.; Kiremitler, N.B.; Sarp, G.; Pekdemir, S.; Salem, S.; Goksu, A.G.; Onses, M.S.; Sozdutmaz, I.; Sahmetlioglu, E.; Ozkara, E.S.; et al. Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. Appl. Mater. Interfaces 2021, 13, 5678–5690. [Google Scholar] [CrossRef]
- Sambandam, B.; Michael, R.J.V.; Manoharan, P.T. Oxygen vacancies and intense luminescence in manganese loaded ZnO microflowers for visible light water splitting. Nanoscale 2015, 7, 13935–13942. [Google Scholar] [CrossRef]
- Drouilly, C.; Krafft, J.M.; Averseng, F.; Casale, S.; Bazer-Bachi, D.; Chizallet, C.; Lecocq, V.; Vezin, H.; Lauron-Pernot, H.; Costentin, G. ZnO Oxygen Vacancies Formation and Filling Followed by in Situ Photoluminescence and in Situ EPR. J. Phys. Chem. C 2012, 116, 21297–21307. [Google Scholar] [CrossRef]
- Hosny, M.; Fawazy, M.; Eltaweil, A.S. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. 2022, 12, 7316. [Google Scholar] [CrossRef]
- David, S.P.S.; Veeralakshmi, S.; Sandhya, J.; Nehru, S.; Kalaiselvam, S. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B Chem. 2020, 320, 128410. [Google Scholar] [CrossRef]
- Yeh, L.K.; Luo, J.C.; Chen, M.C.; Wu, C.H.; Chen, J.Z.; Cheng, I.C.; Hsu, C.C.; Tian, W.C. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays. Sensors 2016, 16, 1820. [Google Scholar] [CrossRef]
- Shao, S.F.; Wu, H.Y.; Jiang, F.; Wang, S.M.; Wu, T.; Lei, Y.T.; Koehn, R.; Rao, W.F. Regulable switching from p- to n-type behavior of ordered nanoporous Pt-SnO2 thin films with enhanced room temperature toluene sensing performance. RSC Adv. 2016, 6, 22878–22888. [Google Scholar] [CrossRef]
- Shuvo, S.N.; Gomez, A.M.U.; Mishra, A.; Chen, W.Y.; Dongare, A.M.; Stanciu, L.A. Sulfur-Doped Titanium Carbide MXenes for Room-Temperature Gas Sensing. ACS Sens. 2020, 5, 2915–2924. [Google Scholar] [CrossRef] [PubMed]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuators B Chem. 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Su, Y.J.; Xie, G.Z.; Chen, J.; Du, H.F.; Zhang, H.L.; Yuan, Z.; Ye, Z.B.; Du, X.S.; Taia, H.L.; Jiang, Y.D. Reduced graphene oxide–polyethylene oxide hybrid films for toluene sensing at room temperature. RSC Adv. 2013, 6, 97840–97847. [Google Scholar] [CrossRef]
- Thathsara, S.K.T.; Harrison, C.J.; Hocking, R.K.; Shafiei, M. Photoactive semiconducting metal oxides: Hydrogen gas sensing mechanisms. Int. J. Hydrogen Energy 2022, 47, 18208–18227. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, X.H.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: From metal oxides to 2D materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxidesemiconductor-based gas sensors: A comprehensive review. Sens. Actuators A Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Forleo, A.; Francioso, L.; Capone, S.; Siciliano, P.; Lommens, P.; Hens, Z. Synthesis and gas sensing properties of ZnO quantum dots. Sens. Actuators B Chem. 2010, 146, 111–115. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kin, S.S.; Park, C. Pt nanoparticle decoration on femtosecond laser-irradiated SnO2 nanowires for enhancing C7H8 gas sensing. Sens. Actuators B Chem. 2023, 379, 133279. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, L.; Guo, S.; Hou, M.; Ma, Y. In Situ Synthesis of Hierarchical Flower-like Sn/SnO2 Heterogeneous Structure for Ethanol Gas Detection. Materials 2023, 16, 792. [Google Scholar] [CrossRef]
Sensing Material | Concentration (ppm) | Response | Reference |
---|---|---|---|
GR-wrapped ZnO | 100 | 2.70 | this work |
Ag/Bi2O3 | 100 | 0.89 | [33] |
ZnO Arrays | 6000 | 0.13 | [34] |
Pt-SnO2 | 200 | 0.16 | [35] |
S-doped MXenes | 50 | 0.80 | [36] |
3D TiO2/GR-CNT | 500 | 0.43 | [37] |
RGO/PEO | 200 | 0.65 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Wu, J.; Zeng, D.; Zhou, P. Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties. Materials 2024, 17, 1009. https://doi.org/10.3390/ma17051009
Huang Q, Wu J, Zeng D, Zhou P. Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties. Materials. 2024; 17(5):1009. https://doi.org/10.3390/ma17051009
Chicago/Turabian StyleHuang, Qingwu, Jinjin Wu, Dawen Zeng, and Peng Zhou. 2024. "Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties" Materials 17, no. 5: 1009. https://doi.org/10.3390/ma17051009
APA StyleHuang, Q., Wu, J., Zeng, D., & Zhou, P. (2024). Graphene-Wrapped ZnO Nanocomposite with Enhanced Room-Temperature Photo-Activated Toluene Sensing Properties. Materials, 17(5), 1009. https://doi.org/10.3390/ma17051009