Machinability and Surface Properties of Cryogenic Poly(methyl methacrylate) Machined via Single-Point Diamond Turning
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Temperature Variation Test
2.3. Nanoindentation Test
2.4. SPDT of Cryogenically Cooled PMMA
2.5. Measurement and Characterization Tools
3. Results and Discussion
3.1. Temperature Change of Cryogenically Cooled PMMA in Air
3.2. Mechanical Property of Cryogenically Cooled PMMA
3.3. Machinability and Surface Property of Cryogenically Cooled PMMA
3.4. Relationship between Temperature, Material Property and Machinability
4. Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Gaidys, R.; Dambon, O.; Ostasevicius, V.; Dicke, C.; Narijauskaite, B. Ultrasonic tooling system design and development for single point diamond turning (SPDT) of ferrous metals. Int. J. Adv. Manuf. Technol. 2017, 93, 2841–2854. [Google Scholar] [CrossRef]
- Chen, M.J.; Li, M.Q.; Cheng, J.; Xiao, Y.; Pang, Q.L. Study on the optical performance and characterization method of texture on KH2PO4 surface processed by single point diamond turning. Appl. Surf. Sci. 2013, 279, 233–244. [Google Scholar] [CrossRef]
- Kobayashi, A. Ultra-Precision Machining of Plastics. In Proceedings of the SPIE 28th Annual Technical Symposium-Production Aspects of Single Point Machined Optics, San Diego, CA, USA, 21 August 1984. [Google Scholar] [CrossRef]
- Jagtap, K.; Pawade, R. Experimental investigation on the influence of cutting parameters on surface quality obtained in SPDT of PMMA. Int. J. Adv. Des. Manuf. Technol. 2014, 7, 53–58. [Google Scholar]
- Wang, H.; To, S.; Chan, C.Y. Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 2013, 69, 20–29. [Google Scholar] [CrossRef]
- Liman, M.M.; Abou-El-Hossein, K.; Odedeyi, P.B. Modeling and Prediction of Surface Roughness in Ultra-High Precision Diamond Turning of Contact Lens Polymer Using RSM and ANN Methods. Mater. Sci. Forum. 2018, 928, 139–143. [Google Scholar] [CrossRef]
- Sakata, S.; Hayashi, A.; Terajima, T.; Nakao, Y. Influence of cutting condition on surface roughness in single point diamond turning of zr-based bulk metallic glass. In Proceedings of the Asme International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Xie, Q. The Cutting Parameter Affecting to Surface Roughness in Single-point Diamond Turning. Adv. Mater. Mater. Res. 2014, 887–888, 1236–1239. [Google Scholar] [CrossRef]
- Goel, B.; Singh, S.; Sarepaka, R.G.V. Precision Deterministic Machining of Polymethyl Methacrylate by Single-Point Diamond Turning. Mater. Manuf. Process. 2016, 31, 1917–1926. [Google Scholar] [CrossRef]
- LEE, W.B.; Cheung, C.F. A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int. J. Mech. Sci. 2001, 43, 961–991. [Google Scholar] [CrossRef]
- Kakinuma, Y.; Yasuda, N.; Aoyama, T. Micromachining of Soft Polymer Material applying Cryogenic Cooling. J. Adv. Mech. Des. Syst. Manuf. 2008, 2, 560–569. [Google Scholar] [CrossRef]
- Dhokia, V.G.; Newman, S.T.; Crabtree, P.; Ansell, M.P. A methodology for the determination of foamed polymer contraction rates as a result of cryogenic CNC machining. Robot. Comput. Integr. Manuf. 2010, 26, 665–670. [Google Scholar] [CrossRef]
- Kakinuma, Y.; Kidani, S.; Aoyama, T. Ultra-precision cryogenic machining of viscoelastic polymers. CIRP Ann. Manuf. Technol. 2012, 61, 79–82. [Google Scholar] [CrossRef]
- Mishima, K.; Kakinuma, Y.; Aoyama, T. Pre-Deformation-Assisted Cryogenic Micromachining for Fabrication of Three-dimensional Unique Micro Channels. J. Adv. Mech. Des. Syst. Manuf. 2010, 4, 936–947. [Google Scholar] [CrossRef]
- Lin, H.; Jin, T.; Lv, L.; Ai, Q.L. Indentation Size Effect in Pressure-Sensitive Polymer Based on A Criterion for Description of Yield Differential Effects and Shear Transformation-Mediated Plasticity. Polymers 2019, 11, 412. [Google Scholar] [CrossRef]
- Jin, T.; Zhuo, Z.W.; Liu, Z.G.; Xiao, G.S.; Yuan, G.Z.; Shu, X.F. Sensitivity of PMMA nanoindentation measurements to strain rate. J. Appl. Polym. Sci. 2015, 132, 41896. [Google Scholar] [CrossRef]
- Wittmann, J.C.; Kovacs, A.J. Influence de la Stereorégularite des Chaìnes sur les Transitions du Polyméthacrylate de Méthyle. J. Polym. Sci. Part C Polym. Symp. 1967, 16, 4443–4452. [Google Scholar] [CrossRef]
- Gourari, A.; Bendaoud, M.; Lacabanne, C.; Boyer, R.F. Influence of tacticity on Tβ, Tg, and TLL in poly(methyl methacrylate)s by the method of thermally stimulated current (TSC). J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 889–916. [Google Scholar] [CrossRef]
- Mininni, R.M.; Moore, R.S.; Flick, J.R.; Petrie, S.E.B. The effect of excess volume on molecular mobility and on the mode of failure of glassy poly(ethylene terephthalate). J. Macromol. Sci. Part B 1973, 8, 343–359. [Google Scholar] [CrossRef]
- Fukuhara, M.; Sampei, A. Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 1847–1850. [Google Scholar] [CrossRef]
- Yianakopoulos, G.; Vanderschueren, J.; Niezette, J.; Thielen, A. Influence of physical aging processes on electrical properties of amorphous polymers. IEEE Trans. Electr. Insul. 1990, 25, 693–701. [Google Scholar] [CrossRef]
- Muzeau, E.; Vigier, G.; Vassoille, R.; Perez, J. Changes of thermodynamic and dynamic mechanical properties of poly(methyl methacrylate) due to structural relaxation: Low-temperature ageing and modelling. Polymer 1995, 36, 611–620. [Google Scholar] [CrossRef]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Zong, W.J.; Huang, Y.H.; Zhang, Y.L.; Sun, T. Conservation law of surface roughness in single point diamond turning. Int. J. Mach. Tools Manuf. 2014, 84, 58–63. [Google Scholar] [CrossRef]
- He, C.L.; Zong, W.J.; Xue, C.X.; Sun, T. An accurate 3D surface topography model for single-point diamond turning. Int. J. Mach. Tools Manuf. 2018, 134, 42–68. [Google Scholar] [CrossRef]
- He, C.L.; Zong, W.J. Influencing factors and theoretical models for the surface topography in diamond turning process: A review. Micromachines 2019, 10, 288. [Google Scholar] [CrossRef]
- Arcona, C. Tool Force, Chip Formation and Surface Finish in Diamond Turning. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 1996. [Google Scholar]
- Arcona, C.; Dow, T.A. An Empirical Tool Force Model for Precision Machining. J. Manuf. Sci. Eng. 1998, 120, 700–707. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Rajurkar, K.P. Cryogenic machining of hard-to-cut materials. Wear 2000, 239, 168–175. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Muñoz-Escalona, P.; Newman, S.T. State-of-the-art cryogenic machining and processing. Int. J. Comput. Integr. Manuf. 2013, 26, 616–648. [Google Scholar] [CrossRef]
- Khanna, N.; Agrawal, C.; Pimenov, D.Y.; Singla, A.K.; Machado, A.R.; da Silva, L.R.R.; Gupta, M.K.; Sarikaya, M.; Krolczyk, G.M. Review on design and development of cryogenic machining setups for heat resistant alloys and composites. J. Manuf. Process. 2021, 68, 398–422. [Google Scholar] [CrossRef]
- Yildiz, Y.; Nalbant, M. A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 2008, 48, 947–964. [Google Scholar] [CrossRef]
Temperature (°C) | Average HV (kgf/mm2) | Standard Deviation |
---|---|---|
0 | 30.2 | 0.09 |
5 | 26.4 | 0.12 |
10 | 22.2 | 0.10 |
15 | 21.4 | 0.11 |
20 | 19.8 | 0.03 |
25 | 20.2 | 0.07 |
Factors | Levels | ||
---|---|---|---|
Level 1 | Level 2 | Level 3 | |
Spindle speed (rpm) | 1500 | 2000 | 2500 |
Feed rate (mm/min) | 5 | 8 | 10 |
Cut depth (µm) | 2 | 4 | 8 |
Factors | 0 °C | 25 °C |
---|---|---|
Rtew(x) | = | |
wr | > | |
sr | > |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Kang, Q.; Jiang, X.; Fang, X. Machinability and Surface Properties of Cryogenic Poly(methyl methacrylate) Machined via Single-Point Diamond Turning. Materials 2024, 17, 866. https://doi.org/10.3390/ma17040866
Wu X, Kang Q, Jiang X, Fang X. Machinability and Surface Properties of Cryogenic Poly(methyl methacrylate) Machined via Single-Point Diamond Turning. Materials. 2024; 17(4):866. https://doi.org/10.3390/ma17040866
Chicago/Turabian StyleWu, Xiaoyu, Qiang Kang, Xiaoxing Jiang, and Xudong Fang. 2024. "Machinability and Surface Properties of Cryogenic Poly(methyl methacrylate) Machined via Single-Point Diamond Turning" Materials 17, no. 4: 866. https://doi.org/10.3390/ma17040866