Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SiO2
2.2. Synthesis of Catalysts
2.3. Characterization Studies
2.3.1. X-Ray Diffraction (XRD) and Rietveld Analysis
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. Microwave-Induced Plasma Atomic Emission Spectrometry (MIP-AES)
2.3.4. Textural Characterization
2.3.5. Fourier Transformed Infrared Spectroscopy (FTIR)
2.3.6. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
2.3.7. Temperature-Programmed Reduction Mass Spectrometry (H2-TPR)
2.4. Catalytic Evaluation
3. Results and Discussion
3.1. Characterization Results
3.2. Activity Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/infrastructure-industrialization/ (accessed on 1 May 2024).
- Salgado, L. Arroz: Situación y Perspectivas. Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/anuario-opypa-2022/analisis-sectorial-cadenas-productivas/arroz (accessed on 25 March 2024).
- Uruguay XXI. Sector Agrícola En Uruguay. Available online: https://www.uruguayxxi.gub.uy/uploads/informacion/20c2018b1a2e68514020b55bcd11b62c6874640e.pdf (accessed on 25 March 2024).
- Gebretatios, A.G.; Kadiri Kanakka Pillantakath, A.R.; Witoon, T.; Lim, J.-W.; Banat, F.; Cheng, C.K. Rice Husk Waste into Various Template-Engineered Mesoporous Silica Materials for Different Applications: A Comprehensive Review on Recent Developments. Chemosphere 2023, 310, 136843. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Portugau, P.; Castiglioni, J.; Yermán, L.; Cuña, A. Evaluation of the Potential Utilization of Conventional and Unconventional Biomass Wastes Resources for Energy Production. Renew. Energy Power Qual. J. 2019, 17, 511–515. [Google Scholar] [CrossRef]
- MGAP. Plantas de Operación. Available online: https://www.gub.uy/ministerio-industria-energia-mineria/publicaciones/plantas-operacion (accessed on 25 March 2024).
- Xavier, L.; Rocha, M.; Pisani, J.; Zecchi, B. Aqueous Two-Phase Systems Based on Cholinium Ionic Liquids for the Recovery of Ferulic and P-Coumaric Acids from Rice Husk Hydrolysate. Appl. Food Res. 2024, 4, 100381. [Google Scholar] [CrossRef]
- Leal da Silva, E.; Torres, M.; Portugau, P.; Cuña, A. High Surface Activated Carbon Obtained from Uruguayan Rice Husk Wastes for Supercapacitor Electrode Applications: Correlation between Physicochemical and Electrochemical Properties. J. Energy Storage 2021, 44, 103494. [Google Scholar] [CrossRef]
- Torres, M.; Portugau, P.; Castiglioni, J.; Cuña, A.; Yermán, L. Co-Combustion Behaviours of a Low Calorific Uruguayan Oil Shale with Biomass Wastes. Fuel 2020, 266, 117118. [Google Scholar] [CrossRef]
- Adam, F.; Appaturi, J.N.; Iqbal, A. The Utilization of Rice Husk Silica as a Catalyst: Review and Recent Progress. Catal Today 2012, 190, 2–14. [Google Scholar] [CrossRef]
- Moraes, C.A.; Fernandes, I.J.; Calheiro, D.; Kieling, A.G.; Brehm, F.A.; Rigon, M.R.; Berwanger Filho, J.A.; Schneider, I.A.; Osorio, E. Review of the Rice Production Cycle: By-Products and the Main Applications Focusing on Rice Husk Combustion and Ash Recycling. Waste Manag. Res. J. A Sustain. Circ. Econ. 2014, 32, 1034–1048. [Google Scholar] [CrossRef]
- Santana Costa, J.A.; Paranhos, C.M. Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes. J. Clean. Prod. 2018, 192, 688–697. [Google Scholar] [CrossRef]
- Andrade, J.d.L.; Moreira, C.A.; Oliveira, A.G.; de Freitas, C.F.; Montanha, M.C.; Hechenleitner, A.A.W.; Pineda, E.A.G.; de Oliveira, D.M.F. Rice Husk-Derived Mesoporous Silica as a Promising Platform for Chemotherapeutic Drug Delivery. Waste Biomass Valor. 2022, 13, 241–254. [Google Scholar] [CrossRef]
- Araichimani, P.; Prabu, K.M.; Kumar, G.S.; Karunakaran, G.; Surendhiran, S.; Shkir, M.; AlFaify, S. Rice Husk-Derived Mesoporous Silica Nanostructure for Supercapacitors Application: A Possible Approach for Recycling Bio-Waste into a Value-Added Product. Silicon 2022, 14, 10129–10135. [Google Scholar] [CrossRef]
- Sinyoung, S.; Kunchariyakun, K.; Asavapisit, S.; MacKenzie, K.J.D. Synthesis of Belite Cement from Nano-Silica Extracted from Two Rice Husk Ashes. J. Environ. Manag. 2017, 190, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ernst, B.; Libs, S.; Chaumette, P.; Kiennemann, A. Preparation and Characterization of Fischer-Tropsch Active Co/SiO2 Catalysts. Appl. Catal. A Gen. 1999, 186, 145–168. [Google Scholar] [CrossRef]
- Lambert, S.; Cellier, C.; Gaigneaux, E.M.; Pirard, J.-P.; Heinrichs, B. Ag/SiO2, Cu/SiO2 and Pd/SiO2 Cogelled Xerogel Catalysts for Benzene Combustion: Relationships Between Operating Synthesis Variables and Catalytic Activity. Catal. Commun. 2007, 8, 1244–1248. [Google Scholar] [CrossRef]
- Sitthisa, S.; Sooknoi, T.; Ma, Y.; Balbuena, P.B.; Resasco, D.E. Kinetics and Mechanism of Hydrogenation of Furfural on Cu/SiO2 Catalysts. J. Catal. 2011, 277, 1–13. [Google Scholar] [CrossRef]
- Peralta, Y.M.; Molina, R.; Moreno, S. Chemical and Structural Properties of Silica Obtained from Rice Husk and Its Potential as a Catalytic Support. J. Environ. Chem. Eng. 2024, 12, 112370. [Google Scholar] [CrossRef]
- Bratan, V.; Vasile, A.; Chesler, P.; Hornoiu, C. Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts 2022, 12, 1134. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Appl. Catal. B 2021, 281, 119447. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, Y.; Wang, Z.; Zhang, J.; Yue, Y.; Qian, G. Low-Energy Production of a Monolithic Catalyst with MnCu-Synergetic Enhancement for Catalytic Oxidation of Volatile Organic Compounds. J. Environ. Manag. 2023, 336, 117688. [Google Scholar] [CrossRef]
- Ghosh, S.K. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef]
- Torres, M.; de los Santos, C.; Portugau, P.; Yeste, M.D.P.; Castiglioni, J. Utilization of a PILC-Al Obtained from Uruguayan Clay as Support of Mesoporous MnOx-Catalysts on the Combustion of Toluene. Appl. Clay. Sci. 2021, 201, 105935. [Google Scholar] [CrossRef]
- Gaticaa, J.M.; Castiglionib, J.; de los Santosb, C.; Yestea, M.P.; Cifredoa, G.A.; Torresb, M.; Vidala, H. Clay Honeycomb Monoliths as Support of Manganese Catalysts for VOCs Oxidation. Int. J. Chem. Environ. Eng. 2015, 6, 230–235. [Google Scholar]
- Steven, S.; Restiawaty, E.; Pasymi, P.; Bindar, Y. An Appropriate Acid Leaching Sequence in Rice Husk Ash Extraction to Enhance the Produced Green Silica Quality for Sustainable Industrial Silica Gel Purpose. J. Taiwan Inst. Chem. Eng. 2021, 122, 51–57. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Silica Extraction from Rice Husk: Comprehensive Review and Applications. Hybrid Adv. 2023, 4, 100111. [Google Scholar] [CrossRef]
- Rashid, U.; Soltani, S.; Al-Resayes, S.I.; Nehdi, I.A. Metal Oxide Catalysts for Biodiesel Production. In Metal Oxides in Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 303–319. [Google Scholar]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Mattos, B.D.; Rojas, O.J.; Magalhães, W.L.E. Biogenic SiO2 in Colloidal Dispersions via Ball Milling and Ultrasonication. Powder Technol. 2016, 301, 58–64. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Poinsignon, C. Lattice Vibrations of Manganese Oxides. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 689–700. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Fanelli, E.; Turco, M.; Russo, A.; Bagnasco, G.; Marchese, S.; Pernice, P.; Aronne, A. MnO x/ZrO2 Gel-Derived Materials for Hydrogen Peroxide Decomposition. J. Solgel. Sci. Technol. 2011, 60, 426–436. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic Oxidation of Volatile Organic Compounds (VOCs)—A Review. Atmos. Env. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Mars, P.; van Krevelen, D.W. Oxidations Carried out by Means of Vanadium Oxide Catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, J.; Zhang, C.; Jin, B.; Men, Y. Boosting Acetone Oxidation Efficiency over MnO2 Nanorods by Tailoring Crystal Phases. New J. Chem. 2019, 43, 19126–19136. [Google Scholar] [CrossRef]
- Di Benedetto, N.; De los Santos, C.; Del Pilar Yeste, M.; Morais, J.; Do Carmo Martins Alves, M.; Amaya, A.; Suescun, L.; Gatica, J.M.; Vidal, H.; Castiglioni, J. Influence of the Thermal Processing and Doping on LaMnO3 and La0.8A0.2MnO3 (A = Ca, Sr, Ba) Perovskites Prepared by Auto-Combustion for Removal of VOCs. Catalysts 2022, 12, 865. [Google Scholar] [CrossRef]
- Dong, A.; Gao, S.; Wan, X.; Wang, L.; Zhang, T.; Wang, L.; Lang, X.; Wang, W. Labile Oxygen Promotion of the Catalytic Oxidation of Acetone over a Robust Ternary Mn-Based Mullite GdMn2O5. Appl. Catal. B 2020, 271, 118932. [Google Scholar] [CrossRef]
- Samantaray, S.K.; Parida, K. Modified TiO2–SiO2 Mixed Oxides. Appl. Catal. B 2005, 57, 83–91. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Shi, Y.; Yao, X. Preparation and Performance of Carbon-Based Ce-Mn Catalysts for Efficient Degradation of Acetone at Low Temperatures. Int. J. Environ. Res. Public Health 2022, 19, 16879. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Bai, H. Promotional Effects of Manganese on the Structure and Activity of Ce–Al–Si Based Catalysts for Low-Temperature Oxidation of Acetone. Chem. Eng. J. 2016, 291, 94–105. [Google Scholar] [CrossRef]
- Gandı́a, L.M.; Vicente, M.A.; Gil, A. Complete Oxidation of Acetone over Manganese Oxide Catalysts Supported on Alumina- and Zirconia-Pillared Clays. Appl. Catal. B 2002, 38, 295–307. [Google Scholar] [CrossRef]
- Gatica, J.M.; Castiglioni, J.; de los Santos, C.; Yeste, M.P.; Cifredo, G.; Torres, M.; Vidal, H. Use of Pillared Clays in the Preparation of Washcoated Clay Honeycomb Monoliths as Support of Manganese Catalysts for the Total Oxidation of VOCs. Catal. Today 2017, 296, 84–94. [Google Scholar] [CrossRef]
- De los Santos, C.; Vidal, H.; Gatica, J.M.; Yeste, M.P.; Cifredo, G.; Castiglioni, J. Optimized Preparation of Washcoated Clay Honeycomb Monoliths as Support of Manganese Catalysts for Acetone Total Combustion. Microporous Mesoporous Mater. 2021, 310, 110651. [Google Scholar] [CrossRef]
Sample | SBET | Vtp | Vmp | Vµp |
---|---|---|---|---|
m2/g | cm3/g | |||
RHS | 333 | 0.790 | 0.707 | 0.083 |
Mn10RHS | 215 | 0.609 | 0.551 | 0.058 |
Mn30RHS | 169 | 0.470 | 0.425 | 0.045 |
Mn40RHS | 141 | 0.348 | 0.308 | 0.040 |
MnOx | 2 | 0.013 | 0.013 | 0.000 |
Parameter | Mn10RHS | Mn30RHS | Mn40RHS |
---|---|---|---|
269 | 245 | 285 | |
0.51 | 0.86 | 0.85 | |
294 | 291 | 298 | |
0.72 | 0.92 | 0.94 | |
- | 300 | 300 |
Catalyst | Concentration (ppm) | GHSV (mL g−1 h−1) | T50 | T90 | Ref |
---|---|---|---|---|---|
α-MnO2 | 1000 | 90 | 93 | 104 | [38] |
LaMnO3 | 1200 | - | 225 | 280 | [39] |
GdMn2O5 | 500 | 24 | 142 | 160 | [40] |
Mn/TiO2–SiO2 | 550 | 2400 | 160 | 180 | [41] |
Ce0.8-Mn/AC | 100 | - | 175 | 245 | [42] |
MnO2 (2.75 wt.%)/Al-MSP | 1000 | 15,000 | 212 | 270 | [43] |
MnOx (30 wt.%)/SiO2 | 1200 | 15,000 | 220 | 275 | This work |
MnO2, Mn2O3 (10 wt.%)/Zr-PILC | - | 34,000 | 310 | 329 | [44] |
MnO2, Mn2O3 (10 wt.%)/Al-PILC | - | 34,000 | 325 | 342 | [44] |
Mn2O3 (3.07 wt.%)/Clay monolith | 1200 | 14,000 | 275 | 350 | [45] |
Mn2O3/PILC/Clay monolith | 1800 | - | 270 | 380 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, M.; Portugau, P.; De Los Santos, C.; Faccio, R.; Vidal, H.; Gatica, J.M.; Yesté, M.d.P.; Castiglioni, J.; Torres, M. Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste. Materials 2024, 17, 6069. https://doi.org/10.3390/ma17246069
Cardoso M, Portugau P, De Los Santos C, Faccio R, Vidal H, Gatica JM, Yesté MdP, Castiglioni J, Torres M. Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste. Materials. 2024; 17(24):6069. https://doi.org/10.3390/ma17246069
Chicago/Turabian StyleCardoso, Mauricio, Patrice Portugau, Carolina De Los Santos, Ricardo Faccio, Hilario Vidal, José Manuel Gatica, María del Pilar Yesté, Jorge Castiglioni, and Martin Torres. 2024. "Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste" Materials 17, no. 24: 6069. https://doi.org/10.3390/ma17246069
APA StyleCardoso, M., Portugau, P., De Los Santos, C., Faccio, R., Vidal, H., Gatica, J. M., Yesté, M. d. P., Castiglioni, J., & Torres, M. (2024). Catalytic Oxidation of Acetone over MnOx-SiO2 Catalysts: An Effective Approach to Valorize Rice Husk Waste. Materials, 17(24), 6069. https://doi.org/10.3390/ma17246069