Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis
Highlights
- A novel kinetic model for martensitic transformation is presented.
- New numerical models are developed that integrate various weighting schemes of initial yield strength.
- The newly proposed kinetic model has been integrated into the numerical models.
- Illuminate the influence of various weighting schemes of initial yield strength on residual stress distributions.
- The accuracy of residual stress calculations performed by the coupled numerical model is significantly improved.
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Modeling Approach
2.2.1. Temperature Distribution
2.2.2. Phase Transformation Kinetics
2.2.3. Analysis of Stress/Displacement
- Linear weighting scheme;
- Geijselaers weighting scheme for martensite phase with austenite as the soft phase;
- Geijselaers weighting scheme for both bainite and martensite with austenite as the soft phase;
- Linear weighting scheme for martensite and bainite followed by Leblond weighting scheme for a mixture of martensite, bainite and austenite.
3. Results and Discussion
3.1. Cooling Curves
3.2. Microstructure Distribution After Quenching
3.3. Residual Stress Distribution After Quenching
4. Conclusions
- Different initial yield strength weighting schemes influence the equivalent initial yield strength by altering the proportions of austenite yield strength in the mixed-phase material.
- While the weighting scheme has little impact on the location of maximum axial residual tensile and compressive stresses, it significantly affects their amplitudes.
- The model with Leblond weighting results in the highest equivalent initial yield strength, followed by the Geijselaers and linear weighting schemes.
- The finite element model with Leblond weighting more accurately predicts the residual stress distribution after quenching.
- Finite element simulations indicate that plastic deformation during quenching is primarily caused by supercooled austenite, with only a minor contribution from bainite and martensite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eddahhaoui, F.-Z.; Najem, A.; Elhawary, M.; Boudalia, M.; Campos, O.S.; Tabyaoui, M.; José Garcia, A.; Bellaouchou, A.; Amin, H.M.A. Experimental and Computational Aspects of Green Corrosion Inhibition for Low Carbon Steel in HCl Environment Using Extract of Chamaerops Humilis Fruit Waste. J. Alloys Compd. 2024, 977, 173307. [Google Scholar] [CrossRef]
- Boutoumit, A.; Elhawary, M.; Bellaouchou, A.; Boudalia, M.; Hammani, O.; José Garcia, A.; Amin, H.M.A. Electrochemical, Structural and Thermodynamic Investigations of Methanolic Parsley Extract as a Green Corrosion Inhibitor for C37 Steel in HCl. Coatings 2024, 14, 783. [Google Scholar] [CrossRef]
- Zuo, X.W.; Chen, N.L.; Gao, F.; Rong, Y.H. Development of Multi-Cycle Quenching–Partitioning–Tempering Process and Its Applications in Engineering. Int. Heat Treat. Surf. Eng. 2014, 8, 15–23. [Google Scholar] [CrossRef]
- da Silva, A.D.; Pedrosa, T.A.; Gonzalez-Mendez, J.L.; Jiang, X.; Cetlin, P.R.; Altan, T. Distortion in Quenching an AISI 4140 C-Ring—Predictions and Experiments. Mater. Des. 2012, 42, 55–61. [Google Scholar] [CrossRef]
- Jung, M.; Kang, M.; Lee, Y.-K. Finite-Element Simulation of Quenching Incorporating Improved Transformation Kinetics in a Plain Medium-Carbon Steel. Acta Mater. 2012, 60, 525–536. [Google Scholar] [CrossRef]
- Esfahani, A.K.; Babaei, M.; Sarrami-Foroushani, S. A Numerical Model Coupling Phase Transformation to Predict Microstructure Evolution and Residual Stress during Quenching of 1045 Steel. Math. Comput. Simul. 2021, 179, 1–22. [Google Scholar] [CrossRef]
- O’ Brien, E.C.H.C.; Yeddu, H.K. Multi-Length Scale Modeling of Carburization, Martensitic Microstructure Evolution and Fatigue Properties of Steel Gears. J. Mater. Sci. Technol. 2020, 49, 157–165. [Google Scholar] [CrossRef]
- Asi, O.; Can, A.Ç.; Pineault, J.; Belassel, M. The Effect of High Temperature Gas Carburizing on Bending Fatigue Strength of SAE 8620 Steel. Mater. Des. 2009, 30, 1792–1797. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, S.; Zhang, J.; Wang, Y.; Rong, Y.; Zuo, X.; Chen, N. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders. Metall. Mater. Trans. A 2017, 48, 4943–4956. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.-W.; Kim, J.; Lee, S.Y.; Kwon, D.; Han, H.N. A Finite Element Simulation for Induction Heat Treatment of Automotive Drive Shaft. ISIJ Int. 2020, 60, 1333–1341. [Google Scholar] [CrossRef]
- Sugianto, A.; Narazaki, M.; Kogawara, M.; Kim, S.Y.; Kubota, S. Distortion Analysis of Axial Contraction of Carburized-Quenched Helical Gear. J. Mater. Eng. Perform. 2010, 19, 194–206. [Google Scholar] [CrossRef]
- Sugianto, A.; Narazaki, M.; Kogawara, M.; Shirayori, A.; Kim, S.-Y.; Kubota, S. Numerical Simulation and Experimental Verification of Carburizing-Quenching Process of SCr420H Steel Helical Gear. J. Mater. Process. Technol. 2009, 209, 3597–3609. [Google Scholar] [CrossRef]
- Lee, S.-J. Comparison of Two Finite Element Simulation Codes Used to Model the Carburizing of Steel. Comp. Mater. Sci. 2013, 68, 47–54. [Google Scholar] [CrossRef]
- Ferguson, B.L.; Li, Z.; Freborg, A.M. Modeling Heat Treatment of Steel Parts. Comp. Mater. Sci. 2005, 34, 274–281. [Google Scholar] [CrossRef]
- Hoang, A.T.; Phuong Nguyen, X.; Ibrahim Khalaf, O.; Xuan Tran, T.; Quang Chau, M.; Minh Hao Dong, T.; Nam Nguyen, D. Thermodynamic Simulation on the Change in Phase for Carburizing Process. Comput. Mater. Contin. 2021, 68, 1129–1145. [Google Scholar] [CrossRef]
- Kim, D.-W.; Cho, H.-H.; Lee, W.-B.; Cho, K.T.; Cho, Y.-G.; Kim, S.-J.; Han, H.N. A Finite Element Simulation for Carburizing Heat Treatment of Automotive Gear Ring Incorporating Transformation Plasticity. Mater. Des. 2016, 99, 243–253. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, Z.; Gan, J.; Wang, X.; Yang, Y.; He, J.; Wei, T.; Qin, X. Numerical Simulation of Martensitic Transformation Plasticity of 42CrMo Steel Based on Spot Continual Induction Hardening Model. Surf. Coat. Technol. 2020, 385, 125428. [Google Scholar] [CrossRef]
- Leblond, J.B.; Mottet, G.; Devaux, J.C. A Theoretical and Numerical Approach to the Plastic Behaviour of Steels during Phase Transformations—I. Derivation of General Relations. J. Mech. Phys. Solids 1986, 34, 395–409. [Google Scholar] [CrossRef]
- Ju, D.; Zhang, W.M.; Zhang, Y. Modeling and Experimental Verification of Martensitic Transformation Plastic Behavior in Carbon Steel for Quenching Process. Mater. Sci. Eng. A 2006, 438–440, 246–250. [Google Scholar] [CrossRef]
- Geijselaers, H.J.M. Numerical Simulation of Stresses Due to Solid State Transformations: The Simulation of Laser Hardening. Ph.D. Thesis, University of Twente, Hellendoorn, The Netherlands, 2003. [Google Scholar]
- Li, J.; Xu, Y.; Liu, Y.; He, H. Investigation of Non-Uniformity of Temperature Distribution and Phase Transformation in Spiral Bevel Gears during Carburizing and Quenching. J. Mater. Sci. 2024, 59, 609–630. [Google Scholar] [CrossRef]
- EN 15305; Non-Destructive Testing—Test Method for Residual Stress Analysis by X-Ray Diffraction. European Committee for Standardization: Brussels, Belgium, 2008.
- Kang, D.T.; Zhang, H. Research on the distribution of residual stress along the cross-section of the workpiece in quenched and tempered large shafts. Trans. Met. Heat Treat. 1983, 4, 61–77. [Google Scholar]
- Leblond, J.B.; Mottet, G.; Devaux, J.; Devaux, J.C. Mathematical Models of Anisothermal Phase Transformations in Steels, and Predicted Plastic Behaviour. Mater. Sci. Technol. 1985, 1, 815–822. [Google Scholar] [CrossRef]
- Kakhki, M.E.; Kermanpur, A.; Golozar, M.A. Numerical Simulation of Continuous Cooling of a Low Alloy Steel to Predict Microstructure and Hardness. Model. Simul. Mater. Sci. Eng. 2009, 17, 045007. [Google Scholar] [CrossRef]
- Voort, G.F.V. Atlas of Time-Temperature Diagrams for Irons and Steels; ASM International: Materials Park, OH, USA, 1991; p. 140. [Google Scholar]
- Kirkaldy, J.S.; Venugopalan, D. Phase Transformation in Ferrous Alloys; Marder, A.R., Goldstein, J.I., Eds.; TMS-AIME: Warrendale, PA, USA, 1984; pp. 126–147. [Google Scholar]
- Lee, Y.K. Effects of Nitrogen on γ →ε Martensitic Transformation and Damping Capacity of Fe-16%Mn-X%N Alloys. J. Mater. Sci. Lett. 2002, 21, 1149–1151. [Google Scholar] [CrossRef]
- Fanfoni, M.; Tomellini, M. The Johnson-Mehl-Avrami-Kohnogorov Model: A Brief Review. Il Nuovo C. D 1998, 20, 1171–1182. [Google Scholar] [CrossRef]
- Leblond, J.B.; Devaux, J.; Devaux, J.C. Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-Plastic Phases. Int. J. Plast. 1989, 5, 551–572. [Google Scholar] [CrossRef]
- Lee, S.-J. A Kinetics Model for Martensite Transformation in Plain Carbon and Low-Alloyed Steels. Metall. Mater. Trans. A 2012, 43, 422–427. [Google Scholar] [CrossRef]
- Koistinen, D.P.; Marburger, R.E. A general equation prescribing extend of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels. Acta Metall. 1959, 7, 59–60. [Google Scholar] [CrossRef]
- Denis, S.; Sjöström, S.; Simon, A. Coupled Temperature, Stress, Phase Transformation Calculation. Metall. Mater. Trans. A 1987, 18, 1203–1212. [Google Scholar] [CrossRef]
- Houlsby, G.T.; Puzrin, A.M. Principles of Hyperplasticity; Springer: London, UK, 2007; pp. 13–33. [Google Scholar]
- Tong, D.; Gu, J.; Totten, G.E. Numerical Investigation of Asynchronous Dual-Frequency Induction Hardening of Spur Gear. Int. J. Mech. Sci. 2018, 142–143, 1–9. [Google Scholar] [CrossRef]
- Fasano, A.; Hömberg, D.; Panizzi, L. A MATHEMATICAL MODEL FOR CASE HARDENING OF STEEL. Math. Models Methods Appl. Sci. 2009, 19, 2101–2126. [Google Scholar] [CrossRef]
- Kang, S.-H.; Im, Y.-T. Finite Element Investigation of Multi-Phase Transformation within Carburized Carbon Steel. J. Mater. Process. Tech. 2007, 183, 241–248. [Google Scholar] [CrossRef]
- Fischer, F.D.; Reisner, G.; Werner, E.; Tanaka, K.; Cailletaud, G.; Antretter, T. A New View on Transformation Induced Plasticity (TRIP). Int. J. Plast. 2000, 16, 723–748. [Google Scholar] [CrossRef]
- Taleb, L. Experimental Analysis of Transformation Plasticity. Int. J. Plast. 2001, 17, 1–20. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|
Weight percent (%) | 0.4 | 0.27 | 0.58 | 1.0 | 0.17 | 0.022 | Balance |
Phase Composition | Austenite | Bainite | Martensite |
---|---|---|---|
TEC 1 (10−5 K−1) | 2.25 | 1.3 | 1.15 |
Type | Expression |
---|---|
Abrassart | |
Desalos | |
Leblond | |
Tanaka |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xu, Y.; Liu, Y. Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis. Materials 2024, 17, 5833. https://doi.org/10.3390/ma17235833
Li J, Xu Y, Liu Y. Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis. Materials. 2024; 17(23):5833. https://doi.org/10.3390/ma17235833
Chicago/Turabian StyleLi, Junpeng, Yingqiang Xu, and Youwei Liu. 2024. "Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis" Materials 17, no. 23: 5833. https://doi.org/10.3390/ma17235833
APA StyleLi, J., Xu, Y., & Liu, Y. (2024). Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis. Materials, 17(23), 5833. https://doi.org/10.3390/ma17235833