Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterizations
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chouhan, L.; Ghimire, S.; Subrahmanyam, C.; Miyasaka, T.; Biju, V. Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 2020, 49, 2869–2885. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, J.S.; Choi, J.; Kim, S.Y.; Jang, H.W. Halide perovskites for applications beyond photovoltaics. Small Methods 2018, 2, 1700310. [Google Scholar] [CrossRef]
- Li, W.G.; Rao, H.S.; Chen, B.X.; Wang, X.D.; Kuang, D.B. A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A 2017, 5, 19431–19438. [Google Scholar] [CrossRef]
- Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048. [Google Scholar] [CrossRef]
- Du, J.; Feng, L.; Guo, X.; Huang, X.; Lin, Z.; Su, J.; Hu, Z.; Zhang, J.; Chang, J.; Hao, Y. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface. J. Power Sources 2020, 455, 227974. [Google Scholar] [CrossRef]
- Lin, C.-T.; Xu, W.; Macdonald, T.J.; Ngiam, J.; Kim, J.-H.; Du, T.; Xu, S.; Tuladhar, P.S.; Kang, H.; Lee, K. Correlating the active layer structure and composition with the device performance and lifetime of amino-acid-modified perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 43505–43515. [Google Scholar] [CrossRef]
- Shih, Y.; Wang, L.; Hsieh, H.; Lin, K. Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3 NH3 PbI3 heterojunction interface with amino acid. J. Mater. Chem. A 2015, 3, 9133–9136. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Tsao, J.-C.; Yeh, C.-H.; Wu, H.-T.; Wu, C.-T.; Wu, S.-H.; Shih, C.-F. Large-Area Perovskite Solar Module Produced by Introducing Self-Assembled L-Histidine Monolayer at TiO2 and Perovskite Interface. Nanomaterials 2024, 14, 1315. [Google Scholar] [CrossRef]
- Wu, M.; Duan, Y.; Yang, L.; You, P.; Li, Z.; Wang, J.; Zhou, H.; Yang, S.; Xu, D.; Zou, H. Multifunctional small molecule as buried interface passivator for efficient planar perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300128. [Google Scholar] [CrossRef]
- Han, F.; Hao, G.; Wan, Z.; Luo, J.; Xia, J.; Jia, C. Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells. Electrochim. Acta 2019, 296, 75–81. [Google Scholar] [CrossRef]
- Niu, T.; Lu, J.; Munir, R.; Li, J.; Barrit, D.; Zhang, X.; Hu, H.; Yang, Z.; Amassian, A.; Zhao, K. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, Y.; Li, X.; Wu, Y.; Meng, X.; Cui, D.; Yang, X.; Han, L. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 2019, 9, 1803766. [Google Scholar] [CrossRef]
- Chen, B.; Rudd, P.N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867. [Google Scholar] [CrossRef]
- Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, S.M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [Google Scholar] [CrossRef]
- Qi, Z.; Li, J.; Zhang, X.; Dou, J.; Guo, Q.; Zhao, Y.; Yang, P.; Tang, Q.; Duan, J. Healing the Buried Interface by a Plant-Derived Green Passivator for Carbon-Based CsPbIBr2 Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2024, 16, 14974–14983. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, C.; Lei, H.; Zheng, X.; Qin, P.; Xiong, L.; Zhao, X.; Yan, Y.; Fang, G. Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 2017, 5, 1658–1666. [Google Scholar] [CrossRef]
- Zong, Y.; Zhou, Y.; Zhang, Y.; Li, Z.; Zhang, L.; Ju, M.-G.; Chen, M.; Pang, S.; Zeng, X.C.; Padture, N.P. Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem 2018, 4, 1404–1415. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, H.-S.; Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 2016, 49, 311–319. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Stoumpos, C.C.; Ren, J.; Hou, Q.; Li, X.; Li, J.; He, H.; Lin, H.; Wang, J. Thiazole-induced surface passivation and recrystallization of CH3NH3PbI3 films for perovskite solar cells with ultrahigh fill factors. ACS Appl. Mater. Interfaces 2018, 10, 42436–42443. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Wu, W.; Dong, X.; Liu, G.; Pan, X.; Zheng, H. Regulating coordination by multi-configurational alkaloid-based passivation molecules for high-performance perovskite photovoltaics. Chem. Eng. J. 2023, 452, 139535. [Google Scholar] [CrossRef]
- Gu, X.; Xiang, W.; Tian, Q.; Liu, S. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2021, 60, 23164–23170. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xue, J.; Wang, K.-L.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Li, M.; Yue, Z.; Ye, Z.; Li, H.; Luo, H.; Yang, Q.D.; Zhou, Y.; Huo, Y.; Cheng, Y. Improving the Efficiency and Stability of MAPbI3 Perovskite Solar Cells by Dipeptide Molecules. Small 2024, 20, 2311400. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Al-Bahrani, M. Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent. Surf. Interfaces 2022, 34, 102341. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Yu, H. Reducing energy loss via adjusting the anode work function and perovskite layer morphology for the efficient and stable hole transporting layer-free perovskite solar cells. Chem. Eng. J. 2022, 431, 133948. [Google Scholar] [CrossRef]
- Kim, H.-S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E.J.; Park, N.-G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Al-Mousoi, A.K.; Singh, S.; Kumar, A.; Hossain, M.K.; Salih, S.Q.; Sasikumar, P.; Pandey, R.; Yadav, A.A.; Yaseen, Z.M. Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer. Opt. Mater. 2023, 138, 113702. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Wang, Q.; Fang, Y.; Shao, Y.; Tang, S.; Deng, Y.; Lu, H.; Liu, Y.; Li, T.; Yang, Z. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 2018, 9, 1625. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, H.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS Appl. Mater. Interfaces 2018, 10, 30607–30613. [Google Scholar] [CrossRef]
- Kouki, H.; Pitié, S.; Torkhani, A.; Mamèche, F.; Decorse, P.; Seydou, M.; Kouki, F.; Lang, P. Tailor-Made Amino-Based Self-Assembled Monolayers Grafted on Electron Transport ZnO Layers: Perovskite Solar Cell Performance and Modified Interface Relationship. ACS Appl. Energy Mater. 2022, 5, 1635–1645. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-C.; Wu, S.-H.; Tung, Y.-L.; Shih, C.-F. Long-term stable perovskite solar cells prepared by doctor blade coating technology using bilayer structure and non-toxic solvent. Org. Electron. 2022, 101, 106400. [Google Scholar] [CrossRef]
- Xie, L.; Chen, J.; Vashishtha, P.; Zhao, X.; Shin, G.S.; Mhaisalkar, S.G.; Park, N.-G. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 2019, 4, 2192–2200. [Google Scholar] [CrossRef]
- Zhu, T.; Su, J.; Labat, F.; Ciofini, I.; Pauporte, T. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 12, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Fu, J.; Zhang, J.; Chen, Q.; Zhang, Z.; Ji, W.; Wang, A.; Zhang, T.; Zhou, Y.; Song, B. Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chem. Eng. J. 2022, 436, 135269. [Google Scholar] [CrossRef]
- Wen, L.; Rao, Y.; Zhu, M.; Li, R.; Zhan, J.; Zhang, L.; Wang, L.; Li, M.; Pang, S.; Zhou, Z. Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by π-Pb2+ Interactions. Angew. Chem. Int. Ed. 2021, 60, 17356–17361. [Google Scholar] [CrossRef]
- Hsiao, Y.-W.; Song, J.-Y.; Wu, H.-T.; Leu, C.-C.; Shih, C.-F. Properties of halide perovskite photodetectors with little rubidium incorporation. Nanomaterials 2022, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Suo, J.; Yang, B.; Bogachuk, D.; Boschloo, G.; Hagfeldt, A. The Dual Use of SAM Molecules for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 2024, 2400205. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Fu, Q.; Jen, A.K.Y. Methods for Passivating Defects of Perovskite for Inverted Perovskite Solar Cells and Modules. Adv. Energy Mater. 2024, 14, 2401414. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.-W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.-K. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Li, M.; Yu, L.; Zhang, Y.; Gao, H.; Li, P.; Chen, R.; Huang, W. Multiple passivation of electronic defects for efficient and stable perovskite solar cells. Sol. Rrl 2020, 4, 2000481. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wang, C.-P.; Raja, R.; Wang, L.; Tsao, C.-S.; Su, W.-F. High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: Synthesis and characterization of material and film formation mechanism. J. Mater. Chem. A 2018, 6, 4179–4188. [Google Scholar] [CrossRef]
- Hsiao, Y.W.; Cheng, B.S.; Hsu, H.C.; Wu, S.H.; Wu, H.T.; Leu, C.C.; Shih, C.F. Vertical-type 3D/Quasi-2D n-p Heterojunction Perovskite Photodetector. Adv. Funct. Mater. 2023, 33, 2300169. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, C.; Liu, Z.; Zhao, Y.; Ren, A.; Liang, J.; Hu, F.; Zhao, Y.S. Single-Crystalline Perovskite p–n Junction Nanowire Arrays for Ultrasensitive Photodetection. Adv. Mater. 2022, 34, 2203201. [Google Scholar] [CrossRef]
- Shaw, P.E.; Ruseckas, A.; Samuel, I.D. Exciton diffusion measurements in poly (3-hexylthiophene). Adv. Mater. 2008, 20, 3516–3520. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Kumar, R. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds. Appl. Surf. Sci. 2016, 364, 51–60. [Google Scholar] [CrossRef]
- Bredow, T.; Apra, E.; Catti, M.; Pacchioni, G. Cluster and periodic ab-initio calculations on K/TiO2 (110). Surf. Sci. 1998, 418, 150–165. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys. Rev. Lett. 2006, 97, 166803. [Google Scholar] [CrossRef]
- Kurtz, R.L.; Stock-Bauer, R.; Msdey, T.E.; Román, E.; De Segovia, J. Synchrotron radiation studies of H2O adsorption on TiO2 (110). Surf. Sci. 1989, 218, 178–200. [Google Scholar] [CrossRef]
- Henderson, M.A.; Epling, W.S.; Peden, C.H.; Perkins, C.L. Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110). J. Phys. Chem. B 2003, 107, 534–545. [Google Scholar] [CrossRef]
- Tian, S.; Li, G.; Turnell-Ritson, R.C.; Fei, Z.; Bornet, A.; Nazeeruddin, M.K.; Dyson, P.J. Controlling Tin Halide Perovskite Oxidation Dynamics in Solution for Perovskite Optoelectronic Devices. Angew. Chem. Int. Ed. 2024, 63, e202407193. [Google Scholar] [CrossRef] [PubMed]
- Más-Montoya, M.; Curiel, D.; Wang, J.; Bruijnaers, B.J.; Janssen, R.A. Use of Sodium Diethyldithiocarbamate to Enhance the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells. Sol. RRL 2021, 5, 2000811. [Google Scholar] [CrossRef]
- Heo, D.; Jang, W.; Kim, S. Recent review of interfacial engineering for perovskite solar cells: Effect of functional groups on the stability and efficiency. Mater. Today Chem. 2022, 26, 101224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-H.; Hsu, H.-C.; Tsao, J.-C.; Wu, H.-T.; Lin, T.-P.; Wu, C.-T.; Wu, S.-H.; Shih, C.-F. Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer. Materials 2024, 17, 5739. https://doi.org/10.3390/ma17235739
Yeh C-H, Hsu H-C, Tsao J-C, Wu H-T, Lin T-P, Wu C-T, Wu S-H, Shih C-F. Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer. Materials. 2024; 17(23):5739. https://doi.org/10.3390/ma17235739
Chicago/Turabian StyleYeh, Cheng-Hsien, Hung-Chieh Hsu, Jung-Che Tsao, Hsuan-Ta Wu, Teh-Pei Lin, Chien-Te Wu, Shih-Hsiung Wu, and Chuan-Feng Shih. 2024. "Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer" Materials 17, no. 23: 5739. https://doi.org/10.3390/ma17235739
APA StyleYeh, C.-H., Hsu, H.-C., Tsao, J.-C., Wu, H.-T., Lin, T.-P., Wu, C.-T., Wu, S.-H., & Shih, C.-F. (2024). Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer. Materials, 17(23), 5739. https://doi.org/10.3390/ma17235739