Variation of Corrosion Characteristics and Tensile Performances of WE43 Alloy Under Marine Atmospheric Environment
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Macroscopic Corrosion Morphology
3.2. Micro-Corrosion Characteristics
3.3. The Degradation of Mechanical Property
4. Conclusions
- (1)
- In a hot and humid marine atmospheric environment, WE43 alloy corroded rapidly, forming a loose and porous Mg(OH)2 layer on the surface, which had a weak protective effect on the matrix. Thus, as the corrosion progressed, in a hot and humid marine atmospheric environment Cl ions easily entered the Mg alloy through the loose structure and reacted with the Mg matrix to generate MgCl2. As a result, the weight loss of WE43 alloy increased gradually.
- (2)
- The main corrosion mechanism seen in WE43 alloy was pitting corrosion, which formed jagged corrosion pits. As the corrosion progressed, the Mg matrix was continuously consumed as an anode, and the corrosion pits expanded into the surroundings. After expanding to a certain extent, adjacent corrosion pits were connected to each other, resulting in the Mg matrix peeling off.
- (3)
- The formation of corrosion pits promoted the initiation of cracks, which influenced the tensile properties of the alloy significantly. After only 6 months of exposure, the elongation and area reduction of WE43 alloy were significantly reduced, with a reduction ratio of more than 50%. And after an 18-month exposure, the ultimate strength decreased from 359 MPa to 300 MPa.
- (4)
- According to the results of this study, we think that some protective methods should be employed to prolong the service properties of WE43 alloy components when they are used under marine atmospheric environmental conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- James, C.; Williams, E.A.; Starke, J. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J. Alloys Compd. 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Hu, Y.J.; Zhou, Q.; Zhai, W.; Wang, J.Y.; Wei, B. Improved mechanical performances of dynamically solidifed Mg97.7Y1.4Al0.9 alloy by three dimensional ultrasounds. Mater. Sci. Eng. A 2022, 860, 144153. [Google Scholar] [CrossRef]
- Hao, H.; Li, Q.A.; Chen, X.Y.; Chen, P.J.; Li, X.Y.; Tan, J.F. Hot deformation behavior and microstructure evolution of Mg-Gd-Y(-Sm)-Zr alloys. J. Alloys Compd. 2022, 920, 165937. [Google Scholar]
- Chen, X.; Wang, H.; Zou, Q.; Le, Q.; Wen, C.; Atrens, A. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long-period stacking ordered structure for Mg-air battery. Electrochim. Acta 2020, 367, 137518. [Google Scholar] [CrossRef]
- Feng, B.; Liu, G.; Yang, P.; Huang, S.; Qi, D.; Chen, P.; Wang, C.; Du, J.; Zhang, S.; Liu, J. Different role of the second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution. J. Magnes. Alloy. 2022, 6, 1598–1608. [Google Scholar] [CrossRef]
- Wu, S.X.; Wang, S.R.; Wang, G.Q.; Yu, X.C.; Liu, W.T.; Chang, Z.Q.; Wen, D.S. Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening. Trans. Nonferrous Met. Soc. China Engl. Ed. 2019, 29, 1641–1652. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, F.; Kang, F.W.; Du, H.Q.; Chen, Z.Y. Recent research and advances in extrusion forming of magnesium alloys: A review. J. Alloys Compd. 2023, 953, 170080. [Google Scholar] [CrossRef]
- Song, Y.W.; Yuan, K.Z.; Li, X.; Qiao, Y. Microstructure and properties of biomedical Mg-Zn-Ca alloy at different extrusion temperatures. Mater. Today Commun. 2023, 35, 105578. [Google Scholar] [CrossRef]
- Li, L.H.; Qi, F.G.; Zhang, Z.Q.; Lu, L.W.; Yang, X.P. Corrosion, mechanical and biological properties of biodegradable WE43 alloy modifed by Al ion implantation. Ceram. Int. 2023, 49, 5327–5334. [Google Scholar] [CrossRef]
- Mardina, Z.; Venezuela, J.; Sjafrizal, T.; Shi, Z.M.; Dargusch, M.S.; Atrens, A. The influence of strain rate and annealing heat treatments on the corrosion and mechanical properties of WE43 and Zn7Ag biodegradable wires for application in soft tissue reconstructions. Mater. Today Commun. 2023, 35, 105809. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Li, C.X.; Zhao, Y.M.; Liu, J.H.; Xu, J.L.; Guo, D.; Zhang, H.H.; Zhou, X.H.; Yang, P.X.; Zhang, S.J. Comparison of Corrosion Behavior of WE43 and AZ80 Alloys inNaCl and Na2SO4 Solutions. Crystals 2023, 13, 506. [Google Scholar] [CrossRef]
- Liu, G.N.; Xu, J.L.; Feng, B.J.; Liu, J.H.; Qi, D.Q.; Huang, W.Z.; Yang, P.X.; Zhang, S.J. Comparison of Corrosion Performance of Extruded and Forged WE43 Mg Alloy. Materials 2022, 15, 1622. [Google Scholar] [CrossRef]
- Srinivasan, A.; Blawert, C.; Huang, Y.; Mendis, C.L.; Kainer, K.U.; Hort, N. Corrosion behavior of Mg-Gd-Zn based alloys in aqueous NaCl solution. J. Magnes. Alloy. 2014, 2, 245–256. [Google Scholar] [CrossRef]
- Zeng, R.C.; Sun, L.; Zheng, Y.F.; Cui, H.Z.; Han, E.H. Corrosion and characterisation of dual-phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features. Corros. Sci. 2014, 79, 69–82. [Google Scholar] [CrossRef]
- GB/T 16545-2015; Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. SAC: BeiJing, China, 2015.
- Tao, J.Q.; Xiang, L.; Zhang, Y.P.; Zhao, Z.D.; Su, Y.; Chen, Q.; Sun, J.P.; Huang, B.; Peng, F.F. Corrosion Behavior and Mechanical Performance of 7085 Aluminum Alloy in a Humid and Hot Marine Atmosphere. Materials 2022, 15, 7503. [Google Scholar] [CrossRef]
- Xiang, L.; Tao, J.Q.; Xia, X.S.; Zhao, Z.D.; Chen, Q.; Su, Y.; Chai, S.X.; Zheng, Z.Y.; Sun, J.P. Impact of Marine Atmospheric Corrosion on the Microstructure and Tensile Properties of 7075 High-Strength Aluminum Alloy. Materials 2023, 16, 2396. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.H.; Wang, J.Q.; Hou, E. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution. Corros. Sci. 2008, 50, 3610–3614. [Google Scholar] [CrossRef]
- Gore, P.; Cain, T.W.; Laird, J.; Scully, J.R.; Birbilis, N.; Raja, V.S. Enrichment efficiency of noble alloying elements on magnesium and effect on hydrogen evolution. Corros. Sci. 2019, 151, 206–218. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists-Electrolytes and Cathodes Needed. Angew. Chem. Int. Edit. 2017, 56, 12064–12084. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, K.M. Corrosion and Protection of Magnesium Alloys: Recent Advances and Future Perspectives. Coatings 2023, 13, 1533. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; He, Y.T.; Du, X.; Ma, B.L.; Zhang, T.Y. Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures. Int. J. Fatigue 2019, 129, 105225. [Google Scholar] [CrossRef]
- Shi, L.X.; Xiang, L.; Tao, J.Q.; Chen, Q.; Liu, J.; Zhong, Y. Actual Marine Atmospheric Pre-Corrosion Fatigue Performance of 7075-T73 Aluminum Alloy. Metals 2022, 12, 874. [Google Scholar] [CrossRef]
Element | Nd | Gd | Y | Zr | Zn | Li | Fe |
---|---|---|---|---|---|---|---|
Content/% | 2.01 | 0.74 | 3.96 | 0.50 | <0.01 | <0.01 | <0.01 |
Samples No. | Exposure Time | Weight Loss/g | Average of Weight Loss/g | Average of Corrosion Rate/(g/(m2 d)) |
---|---|---|---|---|
1 | 6 months | 0.3146 | 0.2544 | 0.128 |
2 | 0.2557 | |||
3 | 0.1929 | |||
4 | 12 months | 0.4294 | 0.4283 | 0.1075 |
5 | 0.4173 | |||
6 | 0.4384 | |||
7 | 18 months | 0.6195 | 0.6177 | 0.1032 |
8 | 0.5985 | |||
9 | 0.6350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Li, F.; Wu, X.; Zhang, F.; Tao, J.; Wang, M.; Lei, W.; Ran, X.; Wang, H. Variation of Corrosion Characteristics and Tensile Performances of WE43 Alloy Under Marine Atmospheric Environment. Materials 2024, 17, 5353. https://doi.org/10.3390/ma17215353
Xiang L, Li F, Wu X, Zhang F, Tao J, Wang M, Lei W, Ran X, Wang H. Variation of Corrosion Characteristics and Tensile Performances of WE43 Alloy Under Marine Atmospheric Environment. Materials. 2024; 17(21):5353. https://doi.org/10.3390/ma17215353
Chicago/Turabian StyleXiang, Lin, Fei Li, Xinrui Wu, Feiyue Zhang, Jianquan Tao, Maochuan Wang, Wei Lei, Xudong Ran, and Hui Wang. 2024. "Variation of Corrosion Characteristics and Tensile Performances of WE43 Alloy Under Marine Atmospheric Environment" Materials 17, no. 21: 5353. https://doi.org/10.3390/ma17215353
APA StyleXiang, L., Li, F., Wu, X., Zhang, F., Tao, J., Wang, M., Lei, W., Ran, X., & Wang, H. (2024). Variation of Corrosion Characteristics and Tensile Performances of WE43 Alloy Under Marine Atmospheric Environment. Materials, 17(21), 5353. https://doi.org/10.3390/ma17215353