Adsorption Performance of Fe–Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of FMBO and FMBO Nanocomposites
2.3. FMBO Nanocomposites Characterization
2.4. Arsenic Adsorption Experiments
2.5. Adsorption Kinetics and Isotherms Modelling
2.5.1. Adsorption Kinetics
2.5.2. Adsorption Isotherms
2.6. Analytical Methods
3. Results and Discussion
3.1. FMBO Nanocomposite Characterization
3.2. Arsenic Adsorption Performance
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
Adsorbent | Initial As Concentration (mg/L) | pH | qmax As(III) (mg/g) | qmax As(V) (mg/g) | Reference |
---|---|---|---|---|---|
GAC-FMBO | 0.1–1 | 7 | 2.87 | 2.30 | [28] |
Chitosan/Fe–Mn nanofibrous composite | 0.06–2.3 | 6.5 | 4.59 | - | [54] |
Chitosan-FMBO | 0.1–1 | 7 | 3.91 | 3.89 | [55] |
Biochar (BC) impregnated with Fe–Mn binary oxides (FMBC) | 0.2–50 | 8.25 | - | [53] | |
D201 modified with FMBO | 1–50 | 7 | 44.9 | 13.7 | [39] |
Diatomite coated with Fe–Mn binary oxide | 0.05–50 | 7 | 1.68 | - | [24] |
Magnetite coated with FMBO | 0.2–50 | 7 | 55.9 | 54.1 | [56] |
Fe–Mn binary oxide | 0.2–50 | 7 | 46.9 | 57.6 | [22] |
PE-FMBO | 0.1–10 | 7 | 5.29 | 5.37 | This study |
PET-FMBO | 0.1–10 | 7 | 8.74 | 13.3 |
3.3. Adsorption Mechanism
3.4. Regeneration of Fe–Mn Polymer Nanocomposite and Reuse
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, X.; Shi, J.; Pi, K.; Deng, Y.; Yan, B.; Tong, L.; Yao, L.; Dong, Y.; Li, J.; Ma, L.; et al. Groundwater Quality and Public Health. Annu. Rev. Environ. Resour. 2023, 48, 395–418. [Google Scholar] [CrossRef]
- Dao, P.U.; Heuzard, A.G.; Le, T.X.H.; Zhao, J.; Yin, R.; Shang, C.; Fan, C. The Impacts of Climate Change on Groundwater Quality: A Review. Sci. Total Environ. 2024, 912, 169241. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Herrera, M.T.; Gutiérrez, M. Geogenic Arsenic in Groundwater: Challenges, Gaps, and Future Directions. Curr. Opin. Environ. Sci. Health 2022, 27, 100349. [Google Scholar] [CrossRef]
- Santha, N.; Sangkajan, S.; Saenton, S. Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand. Water 2022, 14, 465. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.; Zhang, L.; Liu, Y.; Wang, Y.; Li, X. Comparison of Arsenate and Arsenite Removal Behaviours and Mechanisms from Water by Fe–La Binary Composite (Hydr)Oxides. J. Water Process Eng. 2024, 57, 104603. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Bibi, I.; Natasha; Murtaza, B.; Tariq, T.Z.; Naz, R.; Shahzad, M.; Hussain, M.M.; Niazi, N.K. Global Arsenic Contamination of Groundwater, Soil and Food Crops and Health Impacts. In Environmental Science and Engineering; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2023; pp. 13–33. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A Meta-Analysis of the Distribution, Sources and Health Risks of Arsenic-Contaminated Groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Ganguli, S.; Rifat, M.A.H.; Das, D.; Islam, S.; Islam, M.N. Groundwater Pollution in Bangladesh: A Review. Grassroots J. Nat. Resour. 2021, 04, 115–145. [Google Scholar] [CrossRef]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Cao, W.; Gao, Z.; Guo, H.; Pan, D.; Qiao, W.; Wang, S.; Ren, Y.; Li, Z. Increases in Groundwater Arsenic Concentrations and Risk under Decadal Groundwater Withdrawal in the Lower Reaches of the Yellow River Basin, Henan Province, China. Environ. Pollut. 2022, 296, 118741. [Google Scholar] [CrossRef]
- Rajendran, M.; Barathi, S.; Sajjad, M.; Albasher, G.; Lee, J. Adsorption of As(III) and As(V) by Fe/C Composite Nanoparticles Synthesized via a One-Pot Hydrothermal Approach without the Addition of Carbon Sources. Environ. Res. 2022, 214, 113899. [Google Scholar] [CrossRef] [PubMed]
- Sevak, P.; Pushkar, B. Arsenic Pollution Cycle, Toxicity and Sustainable Remediation Technologies: A Comprehensive Review and Bibliometric Analysis. J. Environ. Manage 2024, 349, 119504. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241548151. [Google Scholar]
- Foti, C.; Mineo, P.G.; Nicosia, A.; Scala, A.; Neri, G.; Piperno, A. Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Front. Chem. 2020, 8, 608236. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kim, K.H.; Kumar, V.; Kim, S. A Review of Functional Sorbents for Adsorptive Removal of Arsenic Ions in Aqueous Systems. J. Hazard. Mater. 2020, 388, 121815. [Google Scholar] [CrossRef]
- Watson, M.; Nikić, J.; Tubić, A.; Isakovski, M.K.; Šolić, M.; Dalmacija, B.; Agbaba, J. Repurposing Spent Filter Sand from Iron and Manganese Removal Systems as an Adsorbent for Treating Arsenic Contaminated Drinking Water. J. Environ. Manage 2022, 302, 114115. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Naushad, M.; Chaudhry, S.A. Promising Prospects of Nanomaterials for Arsenic Water Remediation: A Comprehensive Review. Process Saf. Environ. Prot. 2019, 126, 60–97. [Google Scholar] [CrossRef]
- Nikić, J.; Jazić, J.M.; Watson, M.; Agbaba, J. Application of Nanomaterials in Water Treatment: Arsenic and Natural Organic Matter Removal. Recent. Pat. Nanotechnol. 2020, 15, 197–224. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Talukdar, A.; Sengupta, S.; Das, T.; Dey, A.; Gupta, K.; Dutta, N. Arsenic Contaminated Water Remediation: A State-of-the-Art Review in Synchrony with Sustainable Development Goals. Groundw. Sustain. Dev. 2023, 23, 101000. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Liu, R.; Qu, J. Adsorption Behavior and Mechanism of Arsenate at Fe-Mn Binary Oxide/Water Interface. J. Hazard. Mater. 2009, 168, 820–825. [Google Scholar] [CrossRef]
- Nikic, J.; Agbaba, J.; Watson, M.; Maletic, S.; Jazic, J.M.; Dalmacija, B. Adsorption Mechanism of As(V) and As(III) on Fe-Mn Binary Oxides in Synthetic and Real Water Matrices. Water Sci. Technol. Water Supply 2016, 16, 992–1001. [Google Scholar] [CrossRef]
- Zheng, Q.; Hou, J.; Hartley, W.; Ren, L.; Wang, M.; Tu, S.; Tan, W. As(III) Adsorption on Fe-Mn Binary Oxides: Are Fe and Mn Oxides Synergistic or Antagonistic for Arsenic Removal? Chem. Eng. J. 2020, 389, 124470. [Google Scholar] [CrossRef]
- Chang, F.; Qu, J.; Liu, H.; Liu, R.; Zhao, X. Fe-Mn Binary Oxide Incorporated into Diatomite as an Adsorbent for Arsenite Removal: Preparation and Evaluation. J. Colloid. Interface Sci. 2009, 338, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Nikić, J.; Tubić, A.; Watson, M.; Maletić, S.; Šolić, M.; Majkić, T.; Agbaba, J. Arsenic Removal from Water by Green Synthesized Magnetic Nanoparticles. Water 2019, 11, 2520. [Google Scholar] [CrossRef]
- Ryu, S.R.; Jeon, E.K.; Yang, J.S.; Baek, K. Adsorption of As(III) and As(V) in Groundwater by Fe–Mn Binary Oxide-Impregnated Granular Activated Carbon (IMIGAC). J. Taiwan. Inst. Chem. Eng. 2017, 72, 62–69. [Google Scholar] [CrossRef]
- Shan, H.; Mo, H.; Liu, Y.; Zeng, C.; Peng, S.; Zhan, H. As(III) Removal by a Recyclable Granular Adsorbent through Dopping Fe-Mn Binary Oxides into Graphene Oxide Chitosan. Int. J. Biol. Macromol. 2023, 237, 124184. [Google Scholar] [CrossRef]
- Nikić, J.; Agbaba, J.; Watson, M.A.; Tubić, A.; Šolić, M.; Maletić, S.; Dalmacija, B. Arsenic Adsorption on Fe–Mn Modified Granular Activated Carbon (GAC–FeMn): Batch and Fixed-Bed Column Studies. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2019, 54, 168–178. [Google Scholar] [CrossRef]
- Ociński, D. Optimization of Hybrid Polymer Preparation by Ex Situ Embedding of Waste Fe/Mn Oxides into Chitosan Matrix as an Effective As(III) and As(V) Sorbent. Environ. Sci. Pollut. Res. 2019, 26, 26026–26038. [Google Scholar] [CrossRef]
- Xu, F.; Chen, H.; Dai, Y.; Wu, S.; Tang, X. Arsenic Adsorption and Removal by a New Starch Stabilized Ferromanganese Binary Oxide in Water. J. Environ. Manag. 2019, 245, 160–167. [Google Scholar] [CrossRef]
- Molina Flores, S.; Dumon, M.; Elizondo Martínez, P.; Sánchez Anguiano, M.G. Development of a New Compound Based on Low-Density Polyethylene Degraded with Zeolite Waste for the Removal of Diesel from Water. J. Environ. Manage 2020, 271, 110939. [Google Scholar] [CrossRef]
- Saleem Ahmed Khan, F.; Mujawar Mubarak, N.; Hua Tan, Y.; Rao Karri, R.; Khalid, M.; Walvekar, R.; Chan Abdullah, E.; Ali Mazari, S.; Nizamuddin, S. Magnetic Nanoparticles Incorporation into Different Substrates for Dyes and Heavy Metals Removal-A Review. Environ. Sci. Pollut. Res. 2020, 27, 43526–43541. [Google Scholar] [CrossRef]
- Efimov, M.N.; Vasilev, A.A.; Muratov, D.G.; Kostev, A.I.; Kolesnikov, E.A.; Kiseleva, S.G.; Karpacheva, G.P. Conversion of Polyethylene Terephthalate Waste into High-Yield Porous Carbon Adsorbent via Pyrolysis of Dipotassium Terephthalate. Waste Manag. 2023, 162, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, S.; Ko, D.; Gwon, E.; Hwang, Y. Improved Adsorption Performance of Heavy Metals by Surface Modification of Polypropylene/Polyethylene Media through Oxygen Plasma and Acrylic Acid. Membr. Water Treat. 2020, 11, 231–235. [Google Scholar] [CrossRef]
- Kibria, G. Impacts of Microplastic on Fisheries and Seafood Security—Global Analysis and Synthesis. Sci. Total Environ. 2023, 904, 166652. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, O.I.; Bulgariu, D.; Mocanu, A.M.; Bulgariu, L. Functionalized PET Waste Based Low-Cost Adsorbents for Adsorptive Removal of Cu(II) Ions from Aqueous Media. Water 2020, 12, 2624. [Google Scholar] [CrossRef]
- Taşçı, Y.; Kaptanoğlu, İ.G.; Sert, Ş. Using PET (Polyethylene Terephthalate) Wastes as an Adsorbent for Ce(III) and Sr(II) Removal from Aqueous Solution. J. Radioanal. Nucl. Chem. 2023, 332, 4767–4779. [Google Scholar] [CrossRef]
- Šolic, M.; Maletic, S.; Isakovski, M.K.; Nikic, J.; Watson, M.; Kónya, Z.; Trickovic, J. Comparing the Adsorption Performance of Multiwalled Carbon Nanotubes Oxidized by Varying Degrees for Removal of Low Levels of Copper, Nickel and Chromium(VI) from Aqueous Solutions. Water 2020, 12, 723. [Google Scholar] [CrossRef]
- Li, X.; He, K.; Pan, B.; Zhang, S.; Lu, L.; Zhang, W. Efficient As(III) Removal by Macroporous Anion Exchanger-Supported Fe-Mn Binary Oxide: Behavior and Mechanism. Chem. Eng. J. 2012, 193–194, 131–138. [Google Scholar] [CrossRef]
- Sha, T.; Hu, W.; Dong, J.; Chi, Z.; Zhao, Y.; Huang, H. Influence of the Structure and Composition of Fe–Mn Binary Oxides on RGO on As(III) Removal from Aquifers. J. Environ. Sci. 2020, 88, 133–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Pan, X.; Cheng, Y.; Liu, L.; Wang, H.; Han, L.; Lin, Z. Rapid and Selective Removal of Trace As(III) from Water Using Fe–Mn Binary Oxide. Sci. Total Environ. 2024, 907, 167876. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, Y.; Yuan, Y.; Hu, B.; Wang, B. Comparative Analysis of Kinetics and Mechanisms for Pb(II) Sorption onto Three Kinds of Microplastics. Ecotoxicol. Environ. Saf. 2021, 208, 111451. [Google Scholar] [CrossRef]
- Lončarski, M.; Tubić, A.; Kragulj Isakovski, M.; Jović, B.; Apostolović, T.; Nikić, J.; Agbaba, J. Modeling of Chlorinated Phenols Adsorption on Polyethylene and Polyethylene Terephtalate Microplastic. J. Serbian Chem. Soc. 2020, 85, 697–709. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Speciation and Surface Structure of Inorganic Arsenic in Solid Phases: A Review. Environ. Int. 2008, 34, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Wang, Y.; Zhan, H.; Yuan, S.; Yu, M.; Liu, M. Adsorption/Oxidation of Arsenic in Groundwater by Nanoscale Fe-Mn Binary Oxides Loaded on Zeolite. Water Environ. Res. 2014, 86, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, H.; Qu, J.; Jefferson, W. Arsenate Uptake and Arsenite Simultaneous Sorption and Oxidation by Fe-Mn Binary Oxides: Influence of Mn/Fe Ratio, PH, Ca2+, and Humic Acid. J. Colloid. Interface Sci. 2012, 366, 141–146. [Google Scholar] [CrossRef]
- Vujić, M.; Vasiljević, S.; Nikić, J.; Kordić, B.; Agbaba, J.; Tubić, A. Sorption Behavior of Organic Pollutants on Biodegradable and Nondegradable Microplastics: PH Effects. Appl. Sci. 2023, 13, 12835. [Google Scholar] [CrossRef]
- Xu, L.; Shu, Z.; Sun, S.; Wen, Y.; Zhou, J. Amorphous Fe–Mn Binary Oxides Nanoparticles Decorating Waste Bamboo Biomass-Based Monolith for Efficient Arsenic Removal with Column Adsorption. Sep. Purif. Technol. 2024, 330, 125426. [Google Scholar] [CrossRef]
- Mondal, P.; Mohanty, B.; Majumder, C.B.; Bhandari, N. Removal of Arsenic from Simulated Groundwater by GAC-Fe: A Modeling Approach. AIChE J. 2009, 55, 1860–1871. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Yue, C.; Ge, H.; Yan, J.; Yang, Y.; Quan, G. Preparation of a Novel Magnetic Calcium-Based Biochar for Arsenic Removal: Behavior and Dominant Mechanism. Sep. Purif. Technol. 2024, 336, 126384. [Google Scholar] [CrossRef]
- Zhang, G.; Alam, A.K.; Paul Chen, J. Nanostructured Zr-Mn Binary Hydrous Oxide as an Effective Adsorbent for Arsenic Removal from Water and Groundwater. Colloids Surf. C Environ. Asp. 2023, 1, 100022. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, G.; Li, H. Efficient Removal of Arsenic from Water Using a Granular Adsorbent: Fe-Mn Binary Oxide Impregnated Chitosan Bead. Bioresour. Technol. 2015, 193, 243–249. [Google Scholar] [CrossRef]
- Lin, L.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z.; Chau, H.W. Arsenic Removal in Aqueous Solution by a Novel Fe-Mn Modified Biochar Composite: Characterization and Mechanism. Ecotoxicol. Environ. Saf. 2017, 144, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Ma, Y.; Zhang, B.; He, D.; Chen, J.; Li, X.; Wang, S.; Chi, Y. Electrospinning Chitosan/Fe-Mn Nanofibrous Composite for Efficient and Rapid Removal of Arsenite from Water. Toxics 2024, 12, 230. [Google Scholar] [CrossRef] [PubMed]
- Nikić, J.; Watson, M.; Tubić, A.; Isakovski, M.K.; Maletić, S.; Mohora, E.; Agbaba, J. Arsenic Removal from Water Using a One-Pot Synthesized Low-Cost Mesoporous Fe–Mn-Modified Biosorbent. J. Serbian Chem. Soc. 2019, 84, 327–342. [Google Scholar] [CrossRef]
- Nikić, J.; Watson, M.A.; Isakovski, M.K.; Tubić, A.; Šolić, M.; Kordić, B.; Agbaba, J. Synthesis, Characterization and Application of Magnetic Nanoparticles Modified with Fe-Mn Binary Oxide for Enhanced Removal of As(III) and As(V). Environ. Technol. 2021, 42, 2527–2539. [Google Scholar] [CrossRef]
- Rye, M.; Torres, E.M.; Friborg, O.; Skre, I.; Aarons, G.A. The Evidence-Based Practice Attitude Scale-36 (EBPAS-36): A Brief and Pragmatic Measure of Attitudes to Evidence-Based Practice Validated in US and Norwegian Samples. Implement. Sci. 2017, 12, 44. [Google Scholar] [CrossRef]
- Dhakal, D.; Babel, S. Arsenic Adsorption from Groundwater Using Non-Toxic Waste as Adsorbent. Desalination Water Treat. 2020, 185, 209–225. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Zorpas, A.A. Heat of Adsorption, Adsorption Energy and Activation Energy in Adsorption and Ion Exchange Systems. Desalination Water Treat. 2012, 39, 149–157. [Google Scholar] [CrossRef]
- Kamau, J.; Kamau, G. Modeling of Experimental Adsorption Isotherm Data for Chlorothalonil by Nairobi River Sediment. Mod. Chem. Appl. 2017, 5, 203. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Kinetics and Thermodynamics of Aluminum Oxide Nanopowder as Adsorbent for Fe (III) from Aqueous Solution. Beni-Suef Univ. J. Basic. Appl. Sci. 2015, 4, 142–149. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Comparative Evaluation of Sorption Kinetics and Isotherms of Pyrene onto Microplastics. Chemosphere 2018, 193, 567–573. [Google Scholar] [CrossRef]
- Yu, F.; Wu, Y.; Ma, J.; Zhang, C. Adsorption of Lead on Multi-Walled Carbon Nanotubes with Different Outer Diameters and Oxygen Contents: Kinetics, Isotherms and Thermodynamics. J. Environ. Sci. 2013, 25, 195–203. [Google Scholar] [CrossRef]
- Zhang, G.S.; Qu, J.H.; Liu, H.J.; Liu, R.P.; Li, G.T. Removal Mechanism of As(III) by a Novel Fe-Mn Binary Oxide Adsorbent: Oxidation and Sorption. Environ. Sci. Technol. 2007, 41, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Wang, Y.; Zhan, H.; Liu, M.; Liang, L.; Hu, Q. Competitive Adsorption of Humic Acid and Arsenate on Nanoscale Iron-Manganese Binary Oxide-Loaded Zeolite in Groundwater. J. Geochem. Explor. 2014, 144, 220–225. [Google Scholar] [CrossRef]
- Nanganoa, L.T.; Merlain, G.T.; Ndi, J.N.; Ketcha, J.M. Removal of ammonium ions from aqueous solution using hydroxy-sodalite zeolite. Asian J. Green Chem. 2019, 3, 169–186. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
Fe–Mn Nanocomposites | BET (m2/g) | Mesopore Volume BJH (cm3/g) | Micropore Volume t-Test | Average Pore Size (nm) |
---|---|---|---|---|
PE | 0.248 | 0 | 0 | 3.27 |
PE-FMBO | 0.340 | 0 | 0 | 3.14 |
PET | 0.325 | 0 | 0 | 7.21 |
PET-FMBO | 0.389 | 0.001 | 0 | 7.78 |
FMBO | 250 | 0.338 | 0 | 3.30 |
Fe–Mn Nanocomposites | Elements Weight (%) | |||||
---|---|---|---|---|---|---|
C | O | Si | Ca | Mn | Fe | |
PE | 100 | - | - | - | - | - |
PE-FMBO | 78.0 | 5.80 | - | 1.05 | 2.02 | 5.78 |
PET | 68.7 | 25.5 | 0.91 | 0.56 | - | - |
PET-FMBO | 60.7 | 29.2 | 5.60 | 4.56 | 1.54 | 4.82 |
FMBO | 6.48 | 27.6 | - | - | 17.6 | 50.0 |
Compound | pH | Material | Freundlich Model | Langmuir Model | Dubinin–Radushkevich Model | Temkin Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | n | KF (mg/g)/(mg/L)n | R2 | qmax (mg/g) | KL (L/mg) | R2 | B | qS | Ea | R2 | bT (J/mol) | AT (L/g) | |||
As(III) | 6 | FMBO | 0.975 | 0.57 | 6.62 | 0.971 | 20.82 | 0.49 | 0.964 | 5.33 × 10−4 | 11.9 | 30.6 | 0.803 | 66.8 | 1263.1 |
PE-FMBO | 0.978 | 0.43 | 2.15 | 0.957 | 5.75 | 0.65 | 0.941 | 4.95 × 10−4 | 5.52 | 31.8 | 0.798 | 81.4 | 3803.5 | ||
PET-FMBO | 0.984 | 0.57 | 3.00 | 0.954 | 12.0 | 0.35 | 0.956 | 7.16 × 10−4 | 10.5 | 26.4 | 0.709 | 31.9 | 2014.4 | ||
7 | FMBO | 0.988 | 0.42 | 5.81 | 0.953 | 11.0 | 2.08 | 0.965 | 2.88 × 10−4 | 11.6 | 41.7 | 0.826 | 132.8 | 1746.1 | |
PE-FMBO | 0.985 | 0.42 | 2.03 | 0.977 | 5.29 | 0.72 | 0.72 | 4.60 × 10−4 | 5.06 | 33.0 | 0.712 | 180.4 | 4858.8 | ||
PET-FMBO | 0.955 | 0.55 | 2.31 | 0.925 | 8.74 | 0.38 | 0.910 | 5.89 × 10−4 | 7.449 | 29.1 | 0.598 | 131.6 | 3505.9 | ||
8 | FMBO | 0.986 | 0.43 | 4.95 | 0.958 | 11.0 | 1.05 | 0.961 | 3.58 × 10−4 | 10.8 | 37.3 | 0.843 | 117.9 | 1927.3 | |
PE-FMBO | 0.935 | 0.49 | 1.23 | 0.872 | 4.76 | 0.24 | 0.852 | 8.08 × 10−4 | 4.22 | 24.9 | 0.683 | 23.3 | 4531.8 | ||
PET-FMBO | 0.976 | 0.78 | 2.18 | 0.953 | 7.2 | 0.55 | 0.941 | 4.88 × 10−4 | 6.563 | 32.0 | 0.723 | 82.18 | 3318.1 | ||
As(V) | 6 | FMBO | 0.999 | 0.79 | 11.1 | 0.996 | 46.2 | 0.33 | 0.990 | 5.08 × 10−4 | 28.6 | 31.4 | 0.789 | 30.18 | 746.7 |
PE-FMBO | 0.985 | 0.55 | 1.37 | 0.978 | 5.60 | 0.34 | 0.941 | 7.35 × 10−4 | 4.97 | 26.1 | 0.889 | 7.89 | 2737.8 | ||
PET-FMBO | 0.986 | 0.78 | 2.18 | 0.960 | 18.4 | 0.14 | 0.976 | 1.05 × 10−3 | 12.39 | 21.8 | 0.554 | 17.19 | 1931.6 | ||
7 | FMBO | 0.994 | 0.69 | 10.5 | 0.985 | 29.7 | 0.60 | 0.981 | 4.29 × 10−4 | 24.1 | 34.1 | 0.866 | 33.0 | 761.6 | |
PE-FMBO | 0.967 | 0.48 | 1.67 | 0.952 | 5.37 | 0.51 | 0.968 | 6.14 × 10−4 | 5.18 | 28.5 | 0.920 | 6.48 | 2315.7 | ||
PET-FMBO | 0.983 | 0.58 | 3.75 | 0.969 | 13.3 | 0.47 | 0.976 | 5.93 × 10−4 | 12.0 | 29.0 | 0.843 | 11.8 | 1223.7 | ||
8 | FMBO | 0.972 | 0.63 | 7.87 | 0.945 | 22.4 | 0.66 | 0.954 | 5.05 × 10−4 | 21.4 | 31.5 | 0.730 | 22.4 | 865.0 | |
PE-FMBO | 0.981 | 0.37 | 2.22 | 0.963 | 5.20 | 0.81 | 0.960 | 4.44 × 10−4 | 5.09 | 33.6 | 0.862 | 44.2 | 3512.7 | ||
PET-FMBO | 0.962 | 0.32 | 4.43 | 0.958 | 7.63 | 3.33 | 0.963 | 2.33 × 10−4 | 8.08 | 46.3 | 0.855 | 207.7 | 2567.1 |
As(III) | As(V) | |||||
---|---|---|---|---|---|---|
Adsorbents | pH 6 | pH 7 | pH 8 | pH 6 | pH 7 | pH 8 |
PE-FMBO | 0.587 | 0.432 | 0.405 | 0.210 | 0.121 | 0.305 |
PET-FMBO | 0.670 | 0.424 | 0.234 | 0.211 | 0.181 | 0.112 |
FMBO | 0.521 | 0.423 | 0.321 | 0.364 | 0.212 | 0.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikić, J.; Watson, M.; Jokić Govedarica, J.; Vujić, M.; Pešić, J.; Rončević, S.; Agbaba, J. Adsorption Performance of Fe–Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models. Materials 2024, 17, 5089. https://doi.org/10.3390/ma17205089
Nikić J, Watson M, Jokić Govedarica J, Vujić M, Pešić J, Rončević S, Agbaba J. Adsorption Performance of Fe–Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models. Materials. 2024; 17(20):5089. https://doi.org/10.3390/ma17205089
Chicago/Turabian StyleNikić, Jasmina, Malcolm Watson, Jovana Jokić Govedarica, Maja Vujić, Jovana Pešić, Srđan Rončević, and Jasmina Agbaba. 2024. "Adsorption Performance of Fe–Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models" Materials 17, no. 20: 5089. https://doi.org/10.3390/ma17205089
APA StyleNikić, J., Watson, M., Jokić Govedarica, J., Vujić, M., Pešić, J., Rončević, S., & Agbaba, J. (2024). Adsorption Performance of Fe–Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models. Materials, 17(20), 5089. https://doi.org/10.3390/ma17205089