Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF4) during Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thickness and Chemical Composition
3.2. XPS
3.3. Friction and Wear
3.4. Hardness and Elastic Modulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donnet, C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings: A review. Surf. Coat. Technol. 1998, 100–101, 180–186. [Google Scholar] [CrossRef]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–225. [Google Scholar] [CrossRef]
- Makówka, M.; Pawlak, W.; Konarski, P.; Wendler, B.; Szymanowski, H. Modification of magnetron sputter deposition of nc-WC/a-C(:H) coatings with an additional RF discharge. Diam. Relat. Mater. 2019, 98, 10750. [Google Scholar] [CrossRef]
- Makówka, M.; Pawlak, W.; Konarski, P.; Wendler, B.; Szymanowski, H. Hydrogen content influence on tribological properties of nc-WC/a-C:H coatings. Diam. Relat. Mater. 2016, 67, 16–25. [Google Scholar] [CrossRef]
- Moskalewicz, T.; Wendler, B.; Czyrska-Filemonowicz, A. Microstructural characterization of nanocomposite nc-MeC/a-C coatings on oxygen hardened Ti-6Al-4V alloy. Mater. Charact. 2010, 61, 959–968. [Google Scholar] [CrossRef]
- Zimowski, S.; Moskalewicz, T.; Kot, M.; Wendler, B.; Czyrska-Filemonowicz, A. Microstructure, mechanical and tribological properties of the nc-CrxCy/a-C and nc-CrxCy/a-C:H nanocomposite coatings on oxygen-hardened Ti-6Al-4V alloy. Surf. Interface Anal. 2012, 44, 1225–1228. [Google Scholar] [CrossRef]
- Rubio-Roy, M.; Corbella, C.; Andjar, J.-L.; Bertran, E. Tribological Properties of Fluorinated Amorphous Carbon Thin Films. In New Tribological Ways; InTechOpen Limited: London, UK, 2011; pp. 47–70. [Google Scholar]
- Grischke, M.; Bewilogua, K.; Trojan, K.; Dimigen, H. Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings. Surf. Coat. Technol. 1995, 74–75, 739–745. [Google Scholar] [CrossRef]
- Trojan, K.; Grischke, M.; Dimigen, H. Network Modification of DLC Coatings to Adjust a Defined Surface Energy. Phys. Status Solidi (A) 1994, 145, 575–585. [Google Scholar] [CrossRef]
- D’ Agostino, R.; Lamendola, R.; Favia, P.; Giquel, A. Fluorinated diamondlike carbon films deposited from radio-frequency glow discharge in a triode reactor. J. Vac. Sci. Technol. A Vac. Surf. Film. 1994, 12, 308–313. [Google Scholar] [CrossRef]
- Sah, R.E.; Dischler, B.; Bubenzer, A.; Koidl, P. Amorphous carbon coatings prepared by high rate rf plasma deposition from fluorinated benzenes. Appl. Phys. Lett. 1985, 46, 739–741. [Google Scholar] [CrossRef]
- Seth, J.; Babu, S.V. Fluorohydrogenated amorphous carbon (a-C:H, F) films prepared by the r.f. plasma decomposition of 1,3-butadiene and carbon tetrafluoride. Thin Solid Film. 1993, 230, 90–94. [Google Scholar] [CrossRef]
- Donnet, C.; Fontaine, J.; Grill, A.; Patel, V.; Jahnes, C.; Belin, M. Wear-resistant fluorinated diamondlike carbon films. Surf. Coat. Technol. 1997, 94–95, 531–536. [Google Scholar] [CrossRef]
- Bociaga, D.; Kaminska, M.; Sobczyk-Guzenda, A.; Jastrzebski, K.; Swiatek, L.; Olejnik, A. Surface properties and biological behaviour of Si-DLC coatings fabricated by a multi-target DC–RF magnetron sputtering method for medical applications. Diam. Relat. Mater. 2016, 67, 41–50. [Google Scholar] [CrossRef]
- Bociaga, D.; Sobczyk-Guzenda, A.; Szymanski, W.; Jedrzejczak, A.; Jastrzebska, A.; Olejnik, A.; Jastrzebski, K. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications. Appl. Surf. Sci. 2017, 417, 23–33. [Google Scholar] [CrossRef]
- Bociaga, D.; Sobczyk-Guzenda, A.; Komorowski, P.; Balcerzak, J.; Jastrzebski, K.; Przybyszewska, K.; Kaczmarek, A. Surface Characteristics and Biological Evaluation of Si-DLC Coatings Fabricated Using Magnetron Sputtering Method on Ti6Al7Nb Substrate. Nanomaterials 2019, 9, 812. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MI, USA, 1992. [Google Scholar]
- Pharr, G.M.; Oliver, W.C.; Brotzen, F.R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7, 613–617. [Google Scholar] [CrossRef]
- Gross, T.; Treu, D.; Ünveren, E.; Kemnitz, E.; Unger, W.E.S. Characterization of Cr(III) Compounds of O, OH, F and Cl by XPS. Surf. Sci. Spectra 2008, 15, 77–123. [Google Scholar] [CrossRef]
- Dai, W.; Wu, G.; Wang, A. Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy. Diam. Relat. Mater. 2010, 19, 1307–1315. [Google Scholar] [CrossRef]
- Gayathri, S.; Kumar, N.; Krishnan, R.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.; Sridharan, M. Influence of Cr content on the micro-structural and tribological properties of PLD grown nanocomposite DLC-Cr thin films. Mater. Chem. Phys. 2015, 167, 194–200. [Google Scholar] [CrossRef]
- Nygren, K.; Andersson, M.; Högström, J.; Fredriksson, W.; Edström, K.; Nyholm, L.; Jansson, U. “Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Cr-C films. Appl. Surf. Sci. 2014, 305, 143–153. [Google Scholar] [CrossRef]
- Yate, L.; Martínez-de-Olcoz, L.; Esteve, J.; Lousa, A. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films. Appl. Surf. Sci. 2017, 420, 707–713. [Google Scholar] [CrossRef]
- Yate, L.; Martínez-de-Olcoz, L.; Esteve, J.; Lousa, A. Effect of the bias voltage on the structure of nc-CrC/a-C:H coatings with high carbon content. Surf. Coat. Technol. 2012, 206, 2877–2883. [Google Scholar] [CrossRef]
- Dai, W.; Zheng, H.; Wu, G.; Wang, A. Effect of bias voltage on growth property of Cr-DLC film prepared by linear ion beam deposition technique. Vacuum 2010, 85, 231–235. [Google Scholar] [CrossRef]
- Dai, W.; Ke, P.; Wang, A. Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique. Vacuum 2011, 85, 792–797. [Google Scholar] [CrossRef]
- Chang, J.P.; Krautter, H.W.; Zhu, W.; Opila, R.L.; Pai, C.S. Integration of fluorinated amorphous carbon as low-dielectric constant insulator: Effects of heating and deposition of tantalum nitride. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 2969–2974. [Google Scholar] [CrossRef]
- Chang, J.P.; Krautter, H.W.; Zhu, W.; Opila, R.L.; Pai, C.S. Chemical and Thermal Stability of Fluorinated Amorphous Carbon Films for Interlayer Dielectric Applications. MRS Proc. 1999, 565, 117–122. [Google Scholar] [CrossRef]
- Tang, G.; Ma, X.; Sun, M.; Li, X. Mechanical characterization of ultra-thin fluorocarbon films deposited by R.F. magnetron sputtering. Carbon 2005, 43, 345–350. [Google Scholar] [CrossRef]
- Hanamoto, K.; Sasaki, M.; Miyashita, T.; Kido, Y.; Nakayama, Y.; Kawamoto, Y.; Fujiwara, M.; Kaigawa, R. Effect of fluorine ion implantation on the microstructure and microhardness of AISI 440C stainless steel. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 129, 228–232. [Google Scholar] [CrossRef]
Sample | Method | C | Cr | F | O | Sample Thickness [µm] ±0.1 |
---|---|---|---|---|---|---|
S0 | EDS | 84.4 | 13.1 | 0.0 | 1.8 | 0.9 |
XPS | 68.4 ± 0.4 | 24.4 ± 0.2 | 0.0 | 7.1 ± 0.2 | ||
S1 | EDS | 78.5 | 14.7 | 6.4 | 0.4 | 1.0 |
XPS | 81.52 ± 0.03 | 11.9 ± 0.3 | 3.8 ± 0.2 | 2.8 ± 0.1 | ||
S2 | EDS | 74.3 | 17.9 | 7.4 | 0.4 | 0.9 |
XPS | 77.4 ± 0.2 | 14.96 ± 0.01 | 4.9 ± 0.2 | 2.73 ± 0.07 | ||
S3 | EDS | 74.6 | 15.6 | 9.4 | 0.4 | 0.9 |
XPS | n.a. | n.a. | n.a. | n.a. | ||
S4 | EDS | 60.5 | 18.9 | 19.7 | 0.9 | 0.9 |
XPS | 58.9 ± 0.9 | 20.3 ± 0.3 | 19.0 ± 0.6 | 1.77 ± 0.06 | ||
S5 | EDS | 62.4 | 14.9 | 22.0 | 0.8 | 1.1 |
XPS | 61.4 ± 0.2 | 17.9 ± 0.3 | 19.0 ± 0.4 | 1.75 ± 0.03 |
Sample | at.% F | C 1s | Cr 2p | F 1s |
---|---|---|---|---|
S0 | 0 | - | ||
S1 | 6.4 | |||
S2 | 7.4 | |||
S4 | 19.7 | |||
S5 | 22.0 |
Sample | Fluorine Content | Coefficient of Friction µ during the First 400 s (637 Rotations) | Lifespan of Carbon Coating | Kw | |
---|---|---|---|---|---|
[at.%] | [-] | [m]/[Rotations] | [mm3·N−1·m−1] | Std. Dev. | |
S0 | 0 | 0.10 | 202/3206 | 2.54 × 10−5 | 1 × 10−5 |
S1 | 6.4 | 0.14 | 500/7951 | 2.97 × 10−7 | 2 × 10−7 |
S2 | 7.4 | 0.12 | 143/2277 | 3.22 × 10−5 | 2 × 10−5 |
S3 | 9.4 | 0.18 | 500/7951 | 3.60 × 10−7 | 3 × 10−7 |
S4 | 19.7 | 0.14 | 45/714 | 7.84 × 10−5 | 2 × 10−5 |
S5 | 22.0 | 0.21 | 4/56 | 1.13 × 10−4 | 4 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roślak, A.; Doering, J.; Strzałka, W.; Makówka, M.; Jędrzejczak, A.; Kołodziejczyk, Ł.; Balcerzak, J.; Jóźwiak, Ł.; Piwoński, I.; Pawlak, W. Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF4) during Magnetron Sputtering. Materials 2024, 17, 5034. https://doi.org/10.3390/ma17205034
Roślak A, Doering J, Strzałka W, Makówka M, Jędrzejczak A, Kołodziejczyk Ł, Balcerzak J, Jóźwiak Ł, Piwoński I, Pawlak W. Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF4) during Magnetron Sputtering. Materials. 2024; 17(20):5034. https://doi.org/10.3390/ma17205034
Chicago/Turabian StyleRoślak, Adam, Józef Doering, Wioletta Strzałka, Marcin Makówka, Anna Jędrzejczak, Łukasz Kołodziejczyk, Jacek Balcerzak, Łukasz Jóźwiak, Ireneusz Piwoński, and Wojciech Pawlak. 2024. "Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF4) during Magnetron Sputtering" Materials 17, no. 20: 5034. https://doi.org/10.3390/ma17205034
APA StyleRoślak, A., Doering, J., Strzałka, W., Makówka, M., Jędrzejczak, A., Kołodziejczyk, Ł., Balcerzak, J., Jóźwiak, Ł., Piwoński, I., & Pawlak, W. (2024). Formation and Mechano-Chemical Properties of Chromium Fluorides Originated from the Deposition of Carbon-Chromium Nanocomposite Coatings in the Reactive Atmosphere (Ar + CF4) during Magnetron Sputtering. Materials, 17(20), 5034. https://doi.org/10.3390/ma17205034