NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace
Abstract
:1. Introduction
- (1)
- The overall system is simple, compact, and easy to start up and shut down due to the little recycled flue gas.
- (2)
- Oxy-steam combustion requires a much smaller amount of steam than O2/CO2 recycled combustion to achieve the same combustion temperature because of the significantly greater specific heat of steam compared with CO2. The system’s major and auxiliary equipment are smaller than those of the O2/CO2 recycled combustion system.
- (3)
- The formation of NOx and SOx in the boiler can be reduced owing to the introduction of steam.
- (4)
- The pumping costs associated with recycling are relatively low because the transmission medium is water and not flue gas.
2. Materials and Methods
2.1. Coal Sample
2.2. Test Facility
2.3. Flue Gas Analysis
2.4. Combustion Conditions
- Check the airtightness of the combustion system before all tests.
- Heat the reactor to the experimental temperature and adjust the gas flow rate to the corresponding value according to the combustion conditions.
- Open the gas analyzer and monitor the flue gas composition in the reactor.
- Start the micro-feeding device when the reaction gas composition reaches the designed experimental condition.
3. Results and Discussion
3.1. Effect of Atmosphere on NO Emissions
3.2. Effect of Oxygen Concentration on NO Emissions
3.3. Effect of Temperature on NO Emissions
3.4. Effect of Excess Oxygen Ratio on NO Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Toftegaard, M.B.; Brix, J.; Jensen, P.A.; Glarborg, P.; Jensen, A.D. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 2010, 36, 581–625. [Google Scholar] [CrossRef]
- Yin, C.; Yan, J. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy 2016, 162, 742–762. [Google Scholar] [CrossRef]
- Gür, T.M. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Buhre, B.; Elliott, L.; Sheng, C.; Gupta, R.; Wall, T. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005, 31, 283–307. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Cai, L.; Zou, C. Chapter 15—Oxy-Steam Combustion. In Oxy-Fuel Combustion; Zheng, C., Liu, Z., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 325–338. [Google Scholar]
- Zou, C.; Zhang, L.; Cao, S.; Zheng, C. A study of combustion characteristics of pulverized coal in O2/H2O atmosphere. Fuel 2014, 115, 312–320. [Google Scholar] [CrossRef]
- Seepana, S.; Jayanti, S. Steam-moderated oxy-fuel combustion. Energy Convers. Manag. 2010, 51, 1981–1988. [Google Scholar] [CrossRef]
- Jin, B.; Zhao, H.; Zou, C.; Zheng, C. Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energy Convers. Manag. 2015, 99, 92–101. [Google Scholar] [CrossRef]
- Li, L.; Duan, L.; Tong, S.; Anthony, E.J. Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres. Fuel Process. Technol. 2019, 186, 8–17. [Google Scholar] [CrossRef]
- Cai, L.; Zou, C.; Liu, Y.; Zhou, K.; Han, Q.; Zheng, C. Numerical and experimental studies on the ignition of pulverized coal in O2/H2O atmospheres. Fuel 2015, 139, 198–205. [Google Scholar] [CrossRef]
- Yi, B.; Zhang, L.; Huang, F.; Mao, Z.; Zheng, C. Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere. Appl. Energy 2014, 132, 349–357. [Google Scholar] [CrossRef]
- Zou, C.; Cai, L.; Wu, D.; Liu, Y.; Liu, S.; Zheng, C. Ignition behaviors of pulverized coal particles in O2/N2 and O2/H2O mixtures in a drop tube furnace using flame monitoring techniques. Proc. Combust. Inst. 2015, 35, 3629–3636. [Google Scholar] [CrossRef]
- Riaza, J.; Álvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor. Energy 2011, 36, 5314–5319. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. Numerical Investigation of the Effect of CO2/H2O Composition in Oxidizer on Flow Field and Combustion Behavior of Oxy-pulverized Coal Combustion. Combust. Sci. Technol. 2021, 193, 2783–2806. [Google Scholar] [CrossRef]
- Dueso, C.; Mayoral, M.C.; Andrés, J.M.; Escudero, A.I.; Díez, L.I. Towards oxy-steam combustion: The effect of increasing the steam concentration on coal reactivity. Fuel 2019, 239, 534–546. [Google Scholar] [CrossRef]
- Normann, F.; Andersson, K.; Leckner, B.; Johnsson, F. Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energy Combust. Sci. 2009, 35, 385–397. [Google Scholar] [CrossRef]
- Glarborg, P.; Jensen, A.D.; Johnsson, J.E. Fuel nitrogen conversion in solid fuel fired systems. Prog. Energy Combust. Sci. 2003, 29, 89–113. [Google Scholar] [CrossRef]
- Chang, L.; Xie, Z.; Xie, K.-C.; Pratt, K.C.; Hayashi, J.-i.; Chiba, T.; Li, C.-Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN☆. Fuel 2003, 82, 1159–1166. [Google Scholar] [CrossRef]
- Tian, F.-J.; Yu, J.-L.; McKenzie, L.J.; Hayashi, J.-I.; Chiba, T.; Li, C.-Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam. Fuel 2005, 84, 371–376. [Google Scholar] [CrossRef]
- Chang, L.P.; Xie, Z.L.; Xie, K.C. Study on the Formation of NH3 and HCN During the Gasification of Brown Coal in Steam. Process Saf. Environ. Prot. 2006, 84, 446–452. [Google Scholar] [CrossRef]
- McKenzie, L.J.; Tian, F.J.; Li, C.Z. NH3 formation and destruction during the gasification of coal in oxygen and steam. Environ. Sci. Technol. 2007, 41, 5505–5509. [Google Scholar] [CrossRef]
- McKenzie, L.J.; Tian, F.-J.; Guo, X.; Li, C.-Z. NH3 and HCN formation during the gasification of three rank-ordered coals in steam and oxygen. Fuel 2008, 87, 1102–1107. [Google Scholar] [CrossRef]
- Park, D.-C.; Day, S.J.; Nelson, P.F. Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proc. Combust. Inst. 2005, 30, 2169–2175. [Google Scholar] [CrossRef]
- Park, D.-C.; Day, S.J.; Nelson, P.F. Formation of N-containing gas-phase species from char gasification in steam. Fuel 2008, 87, 807–814. [Google Scholar] [CrossRef]
- Yan, X.; Duan, C.; Sun, R.; Ji, X.; Zhang, Y.; Chu, H. Revealing the nitrogen migration mechanism during pyrolysis and steam gasification of biomass: A combined ReaxFF MD and DFT study. Fuel 2024, 369, 131739. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.; Huang, Y.; Xu, Z.; Xing, J.; Anthony, E.J. The role of H2O in structural nitrogen migration during coal devolatilization under oxy-steam combustion conditions. Fuel Process. Technol. 2022, 225, 107040. [Google Scholar] [CrossRef]
- Li, S.; Wei, X.; Guo, X. Effect of H2O Vapor on NO Reduction by CO: Experimental and Kinetic Modeling Study. Energy Fuels 2012, 26, 4277–4283. [Google Scholar] [CrossRef]
- Álvarez, L.; Riaza, J.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F. NO emissions in oxy-coal combustion with the addition of steam in an entrained flow reactor. Greenh. Gases Sci. Technol. 2011, 1, 180–190. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, S.; Liu, H.; Yang, J.; Liu, X.; Xu, G. NOx emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel. Fuel 2015, 139, 346–355. [Google Scholar] [CrossRef]
- Lei, M.; Sun, C.; Zou, C.; Mi, H.; Wang, C. Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion. Environ. Sci. Pollut. Res. 2018, 25, 11767–11774. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Cen, S.; Wang, C. Effect of CO2 and H2O Gasifications on the Burning Behavior and NO Release Process of Pulverized Coal at Low Oxygen Concentrations during Oxy-Fuel Combustion. J. Energy Eng. 2019, 145, 04019003. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.; Xu, Z.; Wang, D.; Zheng, F.; Anthony, E.J. The role of H2O in NO formation and reduction during oxy-steam combustion of bituminous coal char. Combust. Flame 2022, 237, 111883. [Google Scholar] [CrossRef]
- Schäfer, S.; Bonn, B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions. Fuel 2000, 79, 1239–1246. [Google Scholar] [CrossRef]
- Zou, C.; He, Y.; Song, Y.; Han, Q.; Liu, Y.; Guo, F.; Zheng, C. The characteristics and mechanism of the NO formation during oxy-steam combustion. Fuel 2015, 158, 874–883. [Google Scholar] [CrossRef]
- Zou, C.; Song, Y.; Li, G.; Cao, S.; He, Y.; Zheng, C. The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. Int. J. Heat Mass Transf. 2014, 75, 12–18. [Google Scholar] [CrossRef]
- Pels, J.R. Nitrous Oxide from Coal Combustion. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1995. [Google Scholar]
- Lin, W.Y. Interactions between SO2 and NOx Emissions in Fluidised Bed Combustion of Coal. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1994. [Google Scholar]
- Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B. NO Emission during Oxy-Fuel Combustion of Lignite. Ind. Eng. Chem. Res. 2008, 47, 1835–1845. [Google Scholar] [CrossRef]
Parameter | H2O | CO2 | N2 | ||
---|---|---|---|---|---|
Density (kg/m3) | 0.22 | 0.54 | 0.34 | 0.64 | 0.41 |
Heat capacity (J/mol K) | 41.29 | 54.32 | 32.71 | 1.26 | 0.76 |
Heat conductivity (W/m K) | 0.097 | 0.071 | 0.066 | 1.47 | 1.38 |
Dynamic viscosity (Pa s) | 3.76 × 10−5 | 4.13 × 10−5 | 4.16 × 10−5 | 0.9 | 0.91 |
Thermal diffusivity (m2/s) | 1.95 × 10−4 | 1.08 × 10−4 | 1.68 × 10−4 | 1.16 | 1.81 |
Mass diffuse coefficient (m2/s) | 1.27 × 10−4 | 8.25 × 10−5 | 9.48 × 10−5 | 1.34 | 1.54 |
Proximate Analysis (wt%, ad) | Ultimate Analysis (wt%, ad) | Qnet,ar (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile Matter | Ash | Fixed Carbon | C | H | O (By Difference) | N | S | 23.15 |
6.43 | 36.95 | 2.86 | 53.76 | 66.05 | 4.43 | 19.01 | 0.84 | 0.38 |
Mode | Temperature (K) | O2 Concentration (vol. %) | Total Volume Flow Rate (STP, L/min) | λ |
---|---|---|---|---|
O2/H2O O2/N2 | 1173 K 1273 K 1373 K | 21 30 40 60 | 1.6 | 0.83 |
1.19 | ||||
1.58 | ||||
2.38 | ||||
O2/N2 | 1373 K | 21 | 1.15 | 0.6 |
1.54 | 0.8 | |||
1.92 | 1 | |||
2.31 | 1.2 | |||
2.69 | 1.4 | |||
O2/H2O | 1373 K | 21 | 1.37 | 0.6 |
2.06 | 0.8 | |||
2.56 | 1 | |||
3.08 | 1.2 | |||
3.62 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Fan, J.; Wang, C.; Yuan, J.; Hao, C.; Cao, S. NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace. Materials 2024, 17, 4997. https://doi.org/10.3390/ma17204997
Zhang L, Fan J, Wang C, Yuan J, Hao C, Cao S. NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace. Materials. 2024; 17(20):4997. https://doi.org/10.3390/ma17204997
Chicago/Turabian StyleZhang, Liang, Jun Fan, Changlin Wang, Jiaqi Yuan, Cen Hao, and Shiying Cao. 2024. "NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace" Materials 17, no. 20: 4997. https://doi.org/10.3390/ma17204997
APA StyleZhang, L., Fan, J., Wang, C., Yuan, J., Hao, C., & Cao, S. (2024). NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace. Materials, 17(20), 4997. https://doi.org/10.3390/ma17204997