Load Deflection Characteristics of Orthodontic Gummetal® Wires in Comparison with Nickel–Titanium Wires: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusy, R.P. A review of contemporary archwires: Their properties and characteristics. Angle Orthod. 1997, 67, 197–207. [Google Scholar] [PubMed]
- Roscoe, M.G.; Meira, J.B.; Cattaneo, P.M. Association of orthodontic force system and root resorption: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Yassir, Y.A.; McIntyre, G.T.; Bearn, D.R. Orthodontic treatment and root resorption: An overview of systematic reviews. Eur. J. Orthod. 2021, 43, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Faltin, R.M.; Arana-Chavez, V.E.; Faltin, K.; Sander, F.-G.; Wichelhaus, A. Root resorptions in upper first premolars after application of continuous intrusive forces. Intra-individual study. J. Orofac. Orthop. 1998, 59, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Kyprianou, C.; Chatzigianni, A.; Daratsianos, N.; Bourauel, C. Vertical and Orovestibular Forces Generated by Beta-Titanium and Stainless-Steel Rectangular Wires in Labial and Fully Customized Lingual Bracket Systems. Materials 2021, 14, 5632. [Google Scholar] [CrossRef] [PubMed]
- Janson, G.R.; de Luca Canto, G.; Martins, D.R.; Henriques, J.F.C.; de Freitas, M.R. A radiographic comparison of apical root resorption after orthodontic treatment with 3 different fixed appliance techniques. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 262–273. [Google Scholar] [CrossRef]
- Nordstrom, B.; Shoji, T.; Anderson, W.C.; Fields, H.W.; Beck, F.M.; Kim, D.-G.; Takano-Yamamoto, T.; Deguchi, T. Comparison of changes in irregularity and transverse width with nickel-titanium and niobium-titanium-tantalum-zirconium archwires during initial orthodontic alignment in adolescents: A double-blind randomized clinical trial. Angle Orthod. 2018, 88, 348–354. [Google Scholar] [CrossRef]
- Abdelrahman, R.S.; Al-Nimri, K.S.; Al Maaitah, E.F. A clinical comparison of three aligning archwires in terms of alignment efficiency: A prospective clinical trial. Angle Orthod. 2015, 85, 434–439. [Google Scholar] [CrossRef]
- Brauchli, L.M.; Keller, H.; Senn, C.; Wichelhaus, A. Influence of bending mode on the mechanical properties of nickel-titanium archwires and correlation to differential scanning calorimetry measurements. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e449–e454. [Google Scholar] [CrossRef]
- Kuntz, M.L.; Vadori, R.; Khan, M.I. Review of Superelastic Differential Force Archwires for Producing Ideal Orthodontic Forces: An Advanced Technology Potentially Applicable to Orthognathic Surgery and Orthopedics. Curr. Osteoporos. Rep. 2018, 16, 380–386. [Google Scholar] [CrossRef]
- Bartzela, T.N.; Senn, C.; Wichelhaus, A. Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod. 2007, 77, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Brantley, W.A. Evolution, clinical applications, and prospects of nickel-titanium alloys for orthodontic purposes. J. World Fed. Orthod. 2020, 9, S19–S26. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M. Contemporary Orthodontics, 6th ed.; Elsevier/Mosby: St. Louis, MO, USA, 2018. [Google Scholar]
- Nagasako, N.; Asahi, R.; Hafner, J. First-principles study of Gum-Metal alloys: Mechanism of ideal strength. R&D Rev. Toyota CRDL 2013, 44, 61–68. [Google Scholar]
- Hasegawa, S. A Concept of “En Bloc” Movement of Teeth Using GUMMETAL Wires. Informationen Orthod. Kieferorthopädie 2013, 45, 77–91. [Google Scholar]
- Gordin, D.M.; Ion, R.; Vasilescu, C.; Drob, S.I.; Cimpean, A.; Gloriant, T. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Schmeidl, K.; Janiszewska-Olszowska, J.; Grocholewicz, K. Clinical Features and Physical Properties of Gummetal Orthodontic Wire in Comparison with Dissimilar Archwires: A Critical Review. Biomed Res. Int. 2021, 2021, 6611979. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Iijima, M.; Muguruma, T.; Yano, F.; Kawashima, I.; Mizoguchi, I. High-cycle fatigue behavior of beta-titanium orthodontic wires. Dent. Mater. J. 2015, 34, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.P.; Tseng, Y.C. A novel beta-titanium alloy orthodontic wire. Kaohsiung J. Med. Sci. 2018, 34, 202–206. [Google Scholar] [CrossRef]
- Kopsahilis, I.E.; Drescher, D. Friction behavior of the wire material Gummetal(R). J. Orofac. Orthop. 2022, 83, 59–72. [Google Scholar] [CrossRef]
- Schmeidl, K.; Wieczorowski, M.; Grocholewicz, K.; Mendak, M.; Janiszewska-Olszowska, J. Frictional Properties of the TiNbTaZrO Orthodontic Wire-A Laboratory Comparison to Popular Archwires. Materials 2021, 14, 6233. [Google Scholar] [CrossRef]
- Zhou, A. Effects of various coating methods on the mechanical, physical, and aesthetic properties of GUMMETAL(R) archwires: In vitro study. Int. Orthod. 2023, 21, 100753. [Google Scholar] [CrossRef] [PubMed]
- Nahás-Scocate, A.C.R.; Neves, M.B.; de Souza, L.T.; de Cerqueira Kasaz, A.; Listik, E.; da Silva, H.D.P.; Cattaneo, P.M.; Scocate, M.C.; Bordin, D.; Matias, M. An in vitro assessment of the influences of different wire materials and bracket systems when correcting dental crowding. J. Mater. Sci. Mater. Med. 2020, 31, 108. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S. A New Super Elasto-Plastic Ti Alloy (Gummetal) Simplifies Treatment Procedure, Scientific Report of Rocky Mountain MORITA; Rocky Mountain MORITA: Tokyo, Japan, 2010; pp. 1–8. [Google Scholar]
- Liu, J.-P.; Wang, Y.-D.; Hao, Y.-L.; Wang, Y.; Nie, Z.-H.; Wang, D.; Ren, Y.; Lu, Z.-P.; Wang, J.; Wang, H.; et al. New intrinsic mechanism on gum-like superelasticity of multifunctional alloys. Sci. Rep. 2013, 3, 2156. [Google Scholar] [CrossRef]
- Saito, T.; Furuta, T.; Hwang, J.H.; Kuramoto, S.; Nishino, K.; Suzuki, N.; Chen, R.; Yamada, A.; Ito, K.; Seno, Y.; et al. Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism. Science 2003, 300, 464–467. [Google Scholar] [CrossRef] [PubMed]
- DIN ISO 15841:2014 + Amd 1:2020; Dentistry—Wires for Use in Orthodontics (ISO 15841:2014 + Amd 1:2020). German version EN ISO 15841:2014 + A1:2020. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 15821; Doorsets and Windows: Water-Tightness Test under Dynamic Pressure Cyclonic Aspects. ISO: Geneva, Switzerland, 2007.
- Field, A. Discovering Statistics Using SPSS; SAGE Publications: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Nikolai, R.J. Orthodontic wire: A continuing evolution. Semin. Orthod. 1997, 3, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Bantleon, H.; Droschl, H.; Stern, G. Different applications of various wire alloys in fixed appliance technic. Informationen Orthod. Kieferorthopädie 1989, 21, 173–183. [Google Scholar]
- Miura, F.; Mogi, M.; Ohura, Y.; Hamanaka, H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am. J. Orthod. Dentofac. Orthop. 1986, 90, 1–10. [Google Scholar] [CrossRef]
- Kuramoto, S.; Furuta, T.; Hwang, J.H.; Nishino, K.; Saito, T. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy. Metall. Mater. Trans. A 2006, 37, 657–662. [Google Scholar] [CrossRef]
- Hasegawa, S. A New Super Elasto-Plastic Ti Alloy-GUMMETAL-Simplify Treatment Procedure, Clinical Use of Gummetal; Rocky Mountain MORITA: Tokyo, Japan, 2010; pp. 1–8. [Google Scholar]
- Talling, R.; Dashwood, R.; Jackson, M.; Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 2009, 57, 1188–1198. [Google Scholar] [CrossRef]
- Morris, J.W., Jr.; Hanlumyuang, Y.; Sherburne, M.; Withey, E.; Chrzan, D.C.; Kuramoto, S.; Hayashi, Y.; Hara, M. Anomalous transformation-induced deformation in textured Gum Metal. Acta Mater. 2010, 58, 3271–3280. [Google Scholar] [CrossRef]
- Withey, E.; Jin, M.; Minor, A.; Kuramoto, S.; Chrzan, D.C.; Morris, J.W., Jr. The deformation of “Gum Metal” in nanoindentation. Mater. Sci. Eng. A 2008, 493, 26–32. [Google Scholar] [CrossRef]
- Furuta, T.; Kuramoto, S.; Hwang, J.; Nishino, K.; Saito, T. Elastic deformation behavior of multi-functional Ti–Nb–Ta–Zr–O alloys. Mater. Trans. 2005, 46, 3001–3007. [Google Scholar] [CrossRef]
- Kazuaki, N. Super Multifunctional Alloy GUM METAL. Toyota Central R and D Lab. Tech. J. R&D Rev. 2003, 38, 50. [Google Scholar]
- Kapila, S.; Sachdeva, R. Mechanical properties and clinical applications of orthodontic wires. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Fuck, L.M.; Drescher, D. Force systems in the initial phase of orthodontic treatment—A comparison of different leveling arch wires. J. Orofac. Orthop. 2006, 67, 6–18. [Google Scholar] [CrossRef]
Manufacturer | Trade Name | Wire Dimension | ||
---|---|---|---|---|
0.014″ | 0.016″ × 0.022″ | |||
Round | Edgewise | Ribbonwise | ||
Adenta® | Thermadent 35 °C™ | X | X | X |
Forestadent® | BioStarter® | X | ||
Forestadent® | Biotorque® | X | X | |
dentalline® | NiTi SE | X | X | X |
Forestadent® | Titanol® Superelastic | X | X | X |
J. Morita Europe | Gummetal® | X | X | X |
Model | Directionality | Force Level at 2.0 mm Deflection [N] | Force Level at 1.0 mm Deflection [N] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Min | Max | Md | p-Value | Mean (SD) | Min | Max | Md | p-Value | ||
Adenta® Thermadent 35 °C™ | round | 0.40 (0.01) | 0.40 | 0.43 | 0.40 | 0.002 | 0.37 (0.02) | 0.35 | 0.4 | 0.36 | 0.002 |
Forestadent® BioStarter® | round | 0.73 (0.02) | 0.71 | 0.76 | 0.73 | 0.002 | 0.70 (0.02) | 0.67 | 0.73 | 0.70 | 0.002 |
dentalline® NiTi SE | round | 1.21 (0.04) | 1.15 | 1.26 | 1.21 | 0.009 | 1.19 (0.02) | 1.15 | 1.22 | 1.19 | 0.002 |
Forestadent® Titanol® Superelastic | round | 1.00 (0.04) | 0.95 | 1.06 | 1.01 | 0.002 | 0.99 (0.03) | 0.94 | 1.03 | 0.99 | 0.002 |
Gummetal® | round | 1.33 (0.05) | 1.24 | 1.37 | 1.34 | ref. | 0.28 (0.04) | 0.21 | 0.31 | 0.29 | ref. |
Model | Directionality | Force Level at 2.0 mm Deflection [N] | Force Level at 1.0 mm Deflection [N] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Min | Max | Md | p-Value | Mean (SD) | Min | Max | Md | p-Value | ||
Adenta® Thermadent 35 °C™ | edgewise | 1.02 (0.01) | 1.01 | 1.04 | 1.01 | 0.002 | 0.79 (0.01) | 0.77 | 0.81 | 0.79 | 0.002 |
Forestandent® BioTorque® | edgewise | 2.12 (0.4) | 1.32 | 2.42 | 2.24 | 0.002 | 1.84 (0.37) | 1.09 | 2.11 | 1.95 | 0.002 |
dentalline® NiTi SE | edgewise | 2.69 (0.1) | 2.61 | 2.86 | 2.65 | 0.002 | 2.47 (0.1) | 2.37 | 2.6 | 2.43 | 0.002 |
Forestadent® Titanol® Superelastic | edgewise | 3.88 (0.08) | 3.75 | 3.99 | 3.88 | 0.002 | 3.49 (0.07) | 3.37 | 3.6 | 3.5 | 0.002 |
Gummetal® | edgewise | 3.41 (0.08) | 3.26 | 3.48 | 3.44 | ref. | 0 (0) | 0 | 0 | 0 | ref. |
Adenta® Thermadent 35 °C™ | ribbonwise | 1.34 (0.04) | 1.28 | 1.38 | 1.34 | 0.002 | 0.87 (0.04) | 0.83 | 0.91 | 0.88 | 0.002 |
Forestandent® BioTorque® | ribbonwise | 3.18 (0.1) | 3.05 | 3.32 | 3.17 | 0.002 | 2.45 (0.09) | 2.33 | 2.56 | 2.44 | 0.002 |
dentalline® NiTi SE | ribbonwise | 3.98 (0.12) | 3.84 | 4.15 | 3.98 | 0.002 | 3.19 (0.1) | 3.07 | 3.3 | 3.2 | 0.002 |
Forestadent® Titanol® Superelastic | ribbonwise | 5.28 (0.1) | 5.18 | 5.41 | 5.28 | 0.002 | 4.43 (0.06) | 4.35 | 4.53 | 4.43 | 0.002 |
Gummetal® | ribbonwise | 2.44 (0.33) | 2.11 | 2.9 | 2.43 | ref. | 0 (0) | 0 | 0.01 | 0 | ref. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbagh, H.; Janjic Rankovic, M.; Martin, D.; Mertmann, M.; Hötzel, L.; Wichelhaus, A. Load Deflection Characteristics of Orthodontic Gummetal® Wires in Comparison with Nickel–Titanium Wires: An In Vitro Study. Materials 2024, 17, 533. https://doi.org/10.3390/ma17020533
Sabbagh H, Janjic Rankovic M, Martin D, Mertmann M, Hötzel L, Wichelhaus A. Load Deflection Characteristics of Orthodontic Gummetal® Wires in Comparison with Nickel–Titanium Wires: An In Vitro Study. Materials. 2024; 17(2):533. https://doi.org/10.3390/ma17020533
Chicago/Turabian StyleSabbagh, Hisham, Mila Janjic Rankovic, Daniel Martin, Matthias Mertmann, Linus Hötzel, and Andrea Wichelhaus. 2024. "Load Deflection Characteristics of Orthodontic Gummetal® Wires in Comparison with Nickel–Titanium Wires: An In Vitro Study" Materials 17, no. 2: 533. https://doi.org/10.3390/ma17020533
APA StyleSabbagh, H., Janjic Rankovic, M., Martin, D., Mertmann, M., Hötzel, L., & Wichelhaus, A. (2024). Load Deflection Characteristics of Orthodontic Gummetal® Wires in Comparison with Nickel–Titanium Wires: An In Vitro Study. Materials, 17(2), 533. https://doi.org/10.3390/ma17020533