Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Element Analysis of IGZO-Based Memristor
3.2. Electrical Characteristics and Conduction Mechanism of IGZO-Based Memristor
3.3. Synaptic Functions of IGZO-Based Memristor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milo, V.; Malavena, G.; Compagnoni, C.M.; Ielmini, D. Memristive and CMOS Devices for Neuromorphic Computing. Materials 2020, 13, 166. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, F.; Shen, X.; Wang, Z.; Rao, M.; He, Y.; Sun, Y.; Li, X.; Zhang, W.; Li, Y.; et al. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv. Mater. 2019, 31, e1902761. [Google Scholar] [CrossRef] [PubMed]
- Farronato, M.; Mannocci, P.; Melegari, M.; Ricci, S.; Compagnoni, C.M.; Ielmini, D. Reservoir Computing with Charge-Trap Memory Based on a MoS2 Channel for Neuromorphic Engineering. Adv. Mater. 2023, 35, e2205381. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Huang, H.M.; Guo, X. Memristive Synapses and Neurons for Bioinspired Computing. Adv. Electron. Mater. 2019, 5, 1900287. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, J.J. Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, C.; Ilyas, N.; Jiang, X.; Liu, F.; Gu, D.; Xu, M.; Jiang, Y.; Li, W. Color-Recognizing Si-Based Photonic Synapse for Artificial Visual System. Adv. Intell. Syst. 2020, 2, 2000107. [Google Scholar] [CrossRef]
- Chu, Y.; Tan, H.; Zhao, C.; Wu, X.; Ding, S.J. Power-Efficient Gas-Sensing and Synaptic Diodes Based on Lateral Pentacene/a-IGZO PN Junctions. ACS Appl. Mater. Interfaces 2022, 14, 9368–9376. [Google Scholar] [CrossRef]
- Liu, S.; Li, M.Y.; Zhang, J.; Su, D.; Huang, Z.; Kunwar, S.; Lee, J. Self-Assembled Al Nanostructure/ZnO Quantum Dot Heterostructures for High Responsivity and Fast UV Photodetector. Nanomicro Lett. 2020, 12, 114. [Google Scholar] [CrossRef]
- Yu, M.J.; Son, K.R.; Khot, A.C.; Kang, D.Y.; Sung, J.H.; Jang, I.G.; Dange, Y.D.; Dongale, T.D.; Kim, T.G. Three Musketeers: Demonstration of Multilevel Memory, Selector, and Synaptic Behaviors from an Ag-GeTe Based Chalcogenide Material. J. Mater. Res. Technol. 2021, 15, 1984–1995. [Google Scholar] [CrossRef]
- Di Ventra, M.; Pershin, Y.V. Memory Materials: A Unifying Description. Mater. Today 2011, 14, 584–591. [Google Scholar] [CrossRef]
- Nirmal, K.A.; Nhivekar, G.S.; Khot, A.C.; Dongale, T.D.; Kim, T.G. Unraveling the Effect of the Water Content in the Electrolyte on the Resistive Switching Properties of Self-Assembled One-Dimensional Anodized TiO2 Nanotubes. J. Phys. Chem. Lett. 2022, 13, 7870–7880. [Google Scholar] [CrossRef]
- Patil, A.R.; Dongale, T.D.; Kamat, R.K.; Rajpure, K.Y. Spray Pyrolysis Deposited Iron Tungstate Memristive Device for Artificial Synapse Application. Mater. Today Commun. 2021, 29, 102900. [Google Scholar] [CrossRef]
- Azimirad, R.; Naseri, N.; Akhavan, O.; Moshfegh, A.Z. Hydrophilicity Variation of WO3 Thin Films with Annealing Temperature. J. Phys. D Appl. Phys. 2007, 40, 1134–1137. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-Based Synapse Devices for Neuromorphic Systems. Faraday Discuss. 2019, 213, 421–451. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Samanta, S.; Maikap, S.; Rahaman, S.Z.; Cheng, H.M. Temperature-Dependent Non-Linear Resistive Switching Characteristics and Mechanism Using a New W/WO3/WOx/W Structure. Nanoscale Res. Lett. 2016, 11, 389. [Google Scholar] [CrossRef]
- Shin, G.H.; Kim, C.K.; Bang, G.S.; Kim, J.Y.; Jang, B.C.; Koo, B.J.; Woo, M.H.; Choi, Y.K.; Choi, S.Y. Multilevel Resistive Switching Nonvolatile Memory Based on MoS2 Nanosheet-Embedded Graphene Oxide. 2D Mater. 2016, 3, 034002. [Google Scholar] [CrossRef]
- Siddiqui, G.U.; Rehman, M.M.; Yang, Y.J.; Choi, K.H. A Two-Dimensional Hexagonal Boron Nitride/Polymer Nanocomposite for Flexible Resistive Switching Devices. J. Mater. Chem. C Mater. 2017, 5, 862–871. [Google Scholar] [CrossRef]
- Panda, D.; Tseng, T.Y. Perovskite Oxides as Resistive Switching Memories: A Review. Ferroelectrics 2014, 471, 23–64. [Google Scholar] [CrossRef]
- Mao, J.Y.; Zheng, Z.; Xiong, Z.Y.; Huang, P.; Ding, G.L.; Wang, R.; Wang, Z.P.; Yang, J.Q.; Zhou, Y.; Zhai, T.; et al. Lead-Free Monocrystalline Perovskite Resistive Switching Device for Temporal Information Processing. Nano Energy 2020, 71, 104616. [Google Scholar] [CrossRef]
- Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-Oxide RRAM. In Proceedings of the IEEE; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2012; Volume 100, pp. 1951–1970. [Google Scholar]
- Ju, D.; Kim, J.H.; Kim, S. Highly Uniform Resistive Switching Characteristics of Ti/TaOx/ITO Memristor Devices for Neuromorphic System. J. Alloys Compd. 2023, 961, 170920. [Google Scholar] [CrossRef]
- Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved Synaptic Behavior under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems. IEEE Electron Device Lett. 2016, 37, 994–997. [Google Scholar] [CrossRef]
- Zazpe, R.; Ungureanu, M.; Golmar, F.; Stoliar, P.; Llopis, R.; Casanova, F.; Pickup, D.F.; Rogero, C.; Hueso, L.E. Resistive Switching Dependence on Atomic Layer Deposition Parameters in HfO2-Based Memory Devices. J. Mater. Chem. C Mater. 2014, 2, 3204–3211. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Jeon, Y.R.; Kim, S.; Ku, B.; Choi, C. Bio-Realistic Synaptic Characteristics in the Cone-Shaped ZnO Memristive Device. NPG Asia Mater. 2019, 11, 5. [Google Scholar] [CrossRef]
- Won, S.; Lee, S.Y.; Park, J.; Seo, H. Forming-Less and Non-Volatile Resistive Switching in by Oxygen Vacancy Control at Interfaces. Sci. Rep. 2017, 7, 10186. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.P.D.; Liu, P.T.; Huang, Y.P. Electrical and Photosensitive Characteristics of A-IGZO TFTs Related to Oxygen Vacancy. IEEE Trans. Electron. Devices 2011, 58, 1121–1126. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, S.; Koo, S.M.; Lee, S.Y. High-Performance a-IGZO TFT with ZrO2 Gate Dielectric Fabricated at Room Temperature. IEEE Electron. Device Lett. 2010, 31, 225–227. [Google Scholar] [CrossRef]
- Sheng, J.; Hong, T.H.; Lee, H.M.; Kim, K.R.; Sasase, M.; Kim, J.; Hosono, H.; Park, J.S. Amorphous IGZO TFT with High Mobility of 70 cm2/(V s) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lee, D.H.; Cho, E.S.; Kwon, S.J.; Yoo, H. Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors. Micromachines 2023, 14, 1394. [Google Scholar] [CrossRef]
- Nakano, S.; Saito, N.; Miura, K.; Sakano, T.; Ueda, T.; Sugi, K.; Yamaguchi, H.; Amemiya, I.; Hiramatsu, M.; Ishida, A. Highly Reliable A-IGZO TFTs on a Plastic Substrate for Flexible AMOLED Displays. J. Soc. Inf. Disp. 2012, 20, 493–498. [Google Scholar] [CrossRef]
- Zhu, L.; He, Y.; Chen, C.; Zhu, Y.; Shi, Y.; Wan, Q. Synergistic Modulation of Synaptic Plasticity in IGZO-Based Photoelectric Neuromorphic TFTs. IEEE Trans. Electron. Devices 2021, 68, 1659–1663. [Google Scholar] [CrossRef]
- Beom, K.; Yang, P.; Park, D.; Kim, H.J.; Lee, H.H.; Kang, C.J.; Yoon, T.S. Single- and Double-Gate Synaptic Transistor with TaO x Gate Insulator and IGZO Channel Layer. Nanotechnology 2019, 30, 025203. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Park, J.; Kang, J.; Lee, S.Y. Amorphous InGaZnO (a-IGZO) Synaptic Transistor for Neuromorphic Computing. ACS Appl. Electron. Mater. 2022, 4, 1427–1448. [Google Scholar] [CrossRef]
- Pereira, M.E.; Deuermeier, J.; Freitas, P.; Barquinha, P.; Zhang, W.; Martins, R.; Fortunato, E.; Kiazadeh, A. Tailoring the Synaptic Properties of A-IGZO Memristors for Artificial Deep Neural Networks. APL Mater. 2022, 10, 011113. [Google Scholar] [CrossRef]
- Pereira, M.; Deuermeier, J.; Nogueira, R.; Carvalho, P.A.; Martins, R.; Fortunato, E.; Kiazadeh, A. Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications. Adv. Electron. Mater. 2020, 6, 2000242. [Google Scholar] [CrossRef]
- Naqi, M.; Kim, T.; Cho, Y.; Pujar, P.; Park, J.; Kim, S. Large Scale Integrated IGZO Crossbar Memristor Array Based Artificial Neural Architecture for Scalable In-Memory Computing. Mater Today Nano 2024, 25, 100441. [Google Scholar] [CrossRef]
- Martins, R.A.; Carlos, E.; Deuermeier, J.; Pereira, M.E.; Martins, R.; Fortunato, E.; Kiazadeh, A. Emergent Solution Based IGZO Memristor towards Neuromorphic Applications. J. Mater. Chem. C Mater. 2022, 10, 1991–1998. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Jeon, Y.R.; Ku, B.; Choi, C. Ar Ion Plasma Surface Modification on the Heterostructured TaOx/InGaZnO Thin Films for Flexible Memristor Synapse. J. Alloys Compd. 2020, 822, 153625. [Google Scholar] [CrossRef]
- Choi, H.W.; Song, K.W.; Kim, S.H.; Nguyen, K.T.; Eadi, S.B.; Kwon, H.M.; Lee, H.D. Zinc Oxide and Indium-Gallium-Zinc-Oxide Bi-Layer Synaptic Device with Highly Linear Long-Term Potentiation and Depression Characteristics. Sci. Rep. 2022, 12, 1259. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Su, X.; Kong, L.; Liu, G.; Zhang, X.; Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; et al. (6470) Spectroscopy; (310.1860) Thin Films, Deposition and Fabrication; (310.6860) Thin Films, Optical Properties. 2003; Volume 300. [Google Scholar]
- Park, J.; Kwak, M.; Moon, K.; Woo, J.; Lee, D.; Hwang, H. TiOx-Based RRAM Synapse with 64-Levels of Conductance and Symmetric Conductance Change by Adopting a Hybrid Pulse Scheme for Neuromorphic Computing. IEEE Electron. Device Lett. 2016, 37, 1559–1562. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Chung, D.; Lee, K.; Kim, S. Multi-Level Cells and Quantized Conductance Characteristics of Al2O3-Based RRAM Device for Neuromorphic System. Nanoscale Res. Lett. 2022, 17, 84. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, K.; Jeon, S.P.; Park, S.K.; Kim, Y.H. The Effect of Multi-Layer Stacking Sequence of TiOx Active Layers on the Resistive-Switching Characteristics of Memristor Devices. Micromachines 2020, 11, 154. [Google Scholar] [CrossRef]
- Prakash, A.; Hwang, H. Multilevel Cell Storage and Resistance Variability in Resistive Random Access Memory. Phys. Sci. Rev. 2019, 1, 6. [Google Scholar] [CrossRef]
- Ai, R.; Zhang, T.; Guo, H.; Luo, W.; Liu, X. Multilevel Resistive Switching and Synaptic Behaviors in MnO-Based Memristor. Curr. Appl. Phys. 2022, 41, 123–130. [Google Scholar] [CrossRef]
- Celano, U.; Yin Chen, Y.; Wouters, D.J.; Groeseneken, G.; Jurczak, M.; Vandervorst, W. Filament Observation in Metal-Oxide Resistive Switching Devices. Appl. Phys. Lett. 2013, 102, 121602. [Google Scholar] [CrossRef]
- Patil, A.R.; Dongale, T.D.; Kamat, R.K.; Rajpure, K.Y. Binary Metal Oxide-Based Resistive Switching Memory Devices: A Status Review. Mater. Today Commun. 2023, 34, 105356. [Google Scholar] [CrossRef]
- Kumar, D.; Aluguri, R.; Chand, U.; Tseng, T.Y. Metal Oxide Resistive Switching Memory: Materials, Properties and Switching Mechanisms. Ceram. Int. 2017, 43, S547–S556. [Google Scholar] [CrossRef]
- Heo, K.J.; Kim, H.S.; Lee, J.Y.; Kim, S.J. Filamentary Resistive Switching and Capacitance-Voltage Characteristics of the a-IGZO/TiO2 Memory. Sci. Rep. 2020, 10, 9276. [Google Scholar] [CrossRef]
- Chen, X.; Jin, Y.; Tao, Z.; Jiang, L.; Wu, X.; Xiao, Y.; Jiang, B.; Wen, X.; Zhang, J.; Zhu, M.; et al. An Oxide-Based Bilayer ZrO/IGZO Memristor for Synaptic Plasticity and Artificial Nociceptor. IEEE Trans. Electron. Devices 2023, 70, 1001–1005. [Google Scholar] [CrossRef]
- Katagiri, T.; Matsuda, T.; Kawanishi, H.; Kimura, M. In-Ga-Zn-O Memristor with Double Layers of Different Oxygen Vacancy Densities and Long-Term Memory towards Neuromorphic Applications. Jpn. J. Appl. Phys. 2023, 62, 058002. [Google Scholar] [CrossRef]
- Jang, J.W.; Park, S.; Burr, G.W.; Hwang, H.; Jeong, Y.H. Optimization of Conductance Change in Pr1-XCaxMnO3-Based Synaptic Devices for Neuromorphic Systems. IEEE Electron. Device Lett. 2015, 36, 457–459. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Yun, S.; Lee, J.; Seo, E.; Kim, S. Ferroelectric Synaptic Devices Based on CMOS-Compatible HfAlOx for Neuromorphic and Reservoir Computing Applications. Nanoscale 2023, 15, 8366–8376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Zhao, J.; Niermann, T.; Liu, Y.; Dai, L.; Zheng, K.; Sun, Y.; Zhang, Y.; Schwarzkopf, J.; et al. A Robust High-Performance Electronic Synapse Based on Epitaxial Ferroelectric Hf0.5Zr0.5O2 Films with Uniform Polarization and High Curie Temperature. Appl. Mater. Today 2022, 29, 101587. [Google Scholar] [CrossRef]
- Ju, D.; Kim, S.; Kim, S. Artificial Synapse Emulated by Indium Tin Oxide/SiN/TaN Resistive Switching Device for Neuromorphic System. Nanomaterials 2023, 13, 2477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.R.; Zhou, L.; Mao, J.Y.; Ren, Y.; Yang, J.Q.; Yang, G.H.; Zhu, X.; Han, S.T.; Roy, V.A.L.; Zhou, Y. Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device. Adv. Mater. Technol. 2019, 4, 1800342. [Google Scholar] [CrossRef]
- Prakash, C.; Dixit, A. Multifunctional BiFeO3Thin Film-Based Memristor Device as an Efficient Synapse: Potential for beyond von Neumann Computing in Neuromorphic Systems. ACS Appl. Electron. Mater. 2022, 4, 5763–5774. [Google Scholar] [CrossRef]
- Lian, X.; Shen, X.; Fu, J.; Gao, Z.; Wan, X.; Liu, X.; Hu, E.; Xu, J.; Tong, Y. Electrical Properties and Biological Synaptic Simulation of AG/MXENE/SiO2/PT RRAM Devices. Electronics 2020, 9, 2098. [Google Scholar] [CrossRef]
- Mcgaugh, J.L. Memory—A Century of Consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef]
- Kirkwood, A.; Rioult, M.G.; Bear, M.F. Experience-Dependent Modification of Synaptic Plasticity in Visual Cortex. Nat. Cell Biol. 1996, 381, 526–528. [Google Scholar] [CrossRef]
- Munakata, Y.; Pfaffly, J. Hebbian Learning and Development. Dev. Sci. 2004, 7, 141–148. [Google Scholar] [CrossRef]
- Caporale, N.; Dan, Y. Spike Timing-Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef]
- Prakash, C.; Dixit, A. Copper Oxide Memristor as Artificial Synapses Emulating Hebbian Symmetric and Asymmetric Learning Behavior for Neuromorphic Computing beyond von Neumann Architecture. J. Appl. Phys. 2023, 134, 044903. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Y.; Wan, Q. Organic Synaptic Devices for Neuromorphic Systems. J. Phys. D Appl. Phys. 2018, 51, 314004. [Google Scholar] [CrossRef]
No | Stack | Operating Voltage | Synaptic Functions | Ref. |
---|---|---|---|---|
1 | Mo/a-IGZO/Ti/MO | −2 V~2 V | Potentiation, depression | [34] |
2 | Mo/IGZO/Mo | −2.5 V~2.5 V | Potentiation, depression | [35] |
3 | Ag/IGZO/TiN | −2 V~2.5 V | Potentiation, depression, STDP | [36] |
4 | Au/IGZO/Pt | −1 V~0.8 V | Potentiation, depression | [37] |
5 | Ti/TaOx/IGZO/Pt | −1.5 V~1.5 V | Potentiation, depression, PPF, SRDP | [38] |
6 | Ti/IGZO/Ti | −3 V~3 V | Potentiation, depression | [39] |
7 | ITO/IGZO/TaN | −1.5 V~1.5 V | Potentiation, depression, PPF, EPSC, SRDP, STDP | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Ju, D.; Kim, S. Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device. Materials 2024, 17, 481. https://doi.org/10.3390/ma17020481
Kim S, Ju D, Kim S. Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device. Materials. 2024; 17(2):481. https://doi.org/10.3390/ma17020481
Chicago/Turabian StyleKim, Seongmin, Dongyeol Ju, and Sungjun Kim. 2024. "Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device" Materials 17, no. 2: 481. https://doi.org/10.3390/ma17020481
APA StyleKim, S., Ju, D., & Kim, S. (2024). Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device. Materials, 17(2), 481. https://doi.org/10.3390/ma17020481