Analysis of the Strength Properties of Epoxy–Glass Composites Modified with the Addition of Rubber Recyclate Using Kolmogorov–Sinai Metric Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Properties of the Rubber Recyclate Used
2.2. Production of Research Materials
3. Results and Discussion
3.1. Static Tensile Test
3.2. Metric Entropy Analysis of the Mechanical Properties of Individual Material Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahari, S.; Fathullah, M.; Abdullah, M.M.A.B.; Shayfull, Z.; Mia, M.; Darmawan, V.E.B. Recent developments in fire retardant glass fibre reinforced epoxy composite and geopolymer as a potential fire-retardant material: A review. Constr. Build. Mater. 2021, 277, 122246. [Google Scholar] [CrossRef]
- Withers, G.J.; Yu, Y.; Khabashesku, V.N.; Cercone, L.; Hadjiev, V.G.; Souza, J.M.; Davis, D.C. Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos. Part B Eng. 2015, 72, 175–182. [Google Scholar] [CrossRef]
- Ely, T.; Kumosa, M. The Stress Corrosion Experiments on an E-Glass/Epoxy Unidirectional Composite. J. Compos. Mater. 2000, 34, 841–878. [Google Scholar] [CrossRef]
- Ogbonn, V.; Popool, A.; Popool, O.; Adeosun, S. A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: Challenges and recommendations. Polym. Bull. 2022, 79, 6857–6884. [Google Scholar] [CrossRef]
- Nayeeif, A.A.; Hamdan, Z.K.; Metteb, Z.W.; Abdulla, F.A.; Jebur, N.A. Natural filler based composite materials. Arch. Mater. Sci. Eng. 2022, 116, 5–13. [Google Scholar] [CrossRef]
- Abramczyk, N.; Żuk, D.; Panasiuk, K. Analysis of the influence of adding rubber recyclate on the strength properties of epoxy-glass composites. J. KONBiN 2023, 53, 1–12. [Google Scholar] [CrossRef]
- Allouch, M.; Kamoun, M.; Mars, J.; Wali, M.; Dammak, F. Experimental investigation on the mechanical behavior of recycled rubber reinforced polymer composites filled with aluminum powder. Constr. Build. Mater. 2020, 259, 119845. [Google Scholar] [CrossRef]
- Arman, N.S.N.; Chen, R.S.; Ahmad, S. Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction. Constr. Build. Mater. 2021, 302, 124174. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020, 26, 2079–2082. [Google Scholar] [CrossRef]
- Hejna, A.; Korol, J.; Przybysz-Romatowska, M.; Zedler, Ł.; Chmielnicki, B.; Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers—A review. Waste Manag. 2020, 108, 106–118. [Google Scholar] [CrossRef]
- Formela, K.; Kurańska, M.; Barczewski, M. Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers 2022, 14, 1050. [Google Scholar] [CrossRef]
- Al-Shablle, M.; Al-Waily, M.; Njim, E. Analytical evaluation of the influence of adding rubber layers on free vibration of sandwich structure with presence of nano-reinforced composite skins. Arch. Mater. Sci. Eng. 2022, 116, 57–70. [Google Scholar] [CrossRef]
- Bagheri, R.; Williams, M.; Pearson, R. Use of surface modified recycled rubber particles for toughening of epoxy polymers. Polym. Eng. Sci. 1997, 37, 245–251. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L.; Miąsik, P. Assessment of the Applicability of Sustainable Epoxy Composites Containing Waste Rubber Aggregates in Buildings. Buildings 2019, 9, 31. [Google Scholar] [CrossRef]
- Dadfar, M.; Ghadami, F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites. Mater. Des. 2013, 47, 16–20. [Google Scholar] [CrossRef]
- Żuk, D.; Abramczyk, N.; Panasiuk, K. Analysis of strength parameters at tension of epoxy-glass composites with rubber recyclate addition. J. KONBiN 2022, 52, 131–150. [Google Scholar] [CrossRef]
- Żuk, D.; Abramczyk, N.; Drewing, S. Investigation of the influence of recyclate content on Poisson number of composites. Sci. Eng. Compos. Mater. 2021, 28, 668–675. [Google Scholar] [CrossRef]
- Abramczyk, N.; Żuk, D.; Panasiuk, K.; Dyl, T. Influence of the type of layered distribution of rubber recyclate as an additive modifying the mechanical properties of epoxy-glass composites. Arch. Mater. Sci. Eng. 2022, 118, 81–86. [Google Scholar] [CrossRef]
- Kyzioł, L.; Hajdukiewicz, G. Application of the Kolmogorov-Sinai entropy in determining the yield point, as exemplified by the EN AW-7020 alloy. J. KONBiN 2019, 49, 241–269. [Google Scholar] [CrossRef]
- Garbacz, G.; Kyzioł, L. Application of metric entropy for results interpretation of composite materials mechanical tests. Adv. Mater. Sci. 2017, 17, 70–81. [Google Scholar] [CrossRef]
- Kyzioł, L.; Panasiuk, K.; Hajdukiewicz, G.; Dudzik, K. Acoustic emission and ks metric entropy as methods for determining mechanical properties of composite materials. Sensors 2020, 21, 145. [Google Scholar] [CrossRef] [PubMed]
- Grzegorz Hajdukiewicz, Investigation of Properties of Protective Coatings Obtained by Plasma Electrolytic Oxidation (MAO) on Alloys AW-7020 and AW-5083; Gdynia Maritime University Press: Gdynia, Poland, 2023.
- Panasiuk, K.; Dudzik, K.; Hajdukiewicz, G.; Abramczyk, N. Acoustic Emission and K-S Metric Entropy as Methods to Analyze the Influence of Gamma-Aluminum Oxide Nanopowder on the Destruction Process of GFRP Composite Materials. Materials 2023, 16, 7334. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.C.; Pirskawetz, S.; van Zijl, G.P.A.G.; Schmidt, W. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC). Cem. Concr. Res. 2015, 69, 19–24. [Google Scholar] [CrossRef]
- Available online: https://orzelsa.com/wp-content/uploads/2020/10/Karta-techniczna-1-3-mm.pdf (accessed on 9 December 2023).
- PN-EN ISO 527-4: 2022-06; Plastics—Determination of tensile properties—Part 4: Test conditions for isotropic and orthotropic fiber-reinforced plastic composites. Polish Committee for Standardization: Warsaw, Poland, 2022.
- Panasiuk, K.; Dudzik, K. Determining the stages of deformation and destruction of composite materials in a static tensile test by acoustic emission. Materials 2022, 15, 313. [Google Scholar] [CrossRef]
- Charchalis, A.; Kneć, M.; Żuk, D.; Abramczyk, N. Use of 3D Optical Techniques in the Analysis of the Effect of Adding Rubber Recyclate to the Matrix on Selected Strength Parameters of Epoxy–Glass Composites. Acta Mech. Autom. 2023, 17, 333–346. [Google Scholar] [CrossRef]
Ingredient | Content, % |
---|---|
Natural rubber | 15 |
SBR (Styrene–butadiene rubber) | 20 |
BR (Butadiene Rubber) | 10 |
IIR/XIIR (butyl rubber and halogenated butyl rubber) | 5 |
Silica | 15 |
Soot | 15 |
Sulphur | 2 |
Resin | 2 |
Mineral and vegetable oils | 10 |
Other (Zinc oxide, stearic acid) | 6 |
Natural rubber | 15 |
Parameter | Value |
---|---|
Density | 360–370 kg/m3 |
Flash Point | >350 °C |
Thermal decomposition | >180 °C |
Parameter | Unit | Value |
---|---|---|
Epoxy Number | [mol/100 g] | 0.510–0.540 |
Density at 25 °C | [g/cm3] | 1.17 |
Viscosity at 25 °C | [mPa∙s] | 1000–1500 |
Gel time 100 g at 20 °C | [min] | 20 |
Curing time at 20 °C | [days] | 7 |
Composite Designation | Arrangement Recyclate | Number of Layers of the Mat | Resin Content, % | The Content of the Glass Mat, % | Content Recyclate, % |
---|---|---|---|---|---|
K0 | - | 12 | 60% | 40% | 0% |
K1 | 1 layer | 12 | 60% | 35% | 5% |
K2 | 2 layers | 12 | 60% | 35% | 5% |
K3 | 3 layers | 12 | 60% | 35% | 5% |
L3 | Random in warp | 12 | 60% | 37% | 3% |
L5 | Random in warp | 12 | 60% | 35% | 5% |
L7 | Random in warp | 12 | 60% | 33% | 7% |
Material | σm, MPa | ε, % | E, MPa |
---|---|---|---|
K0 | 127.3 | 1.86 | 8446 |
K1 | 108.4 | 1.82 | 7946 |
K2 | 103.7 | 2.15 | 6418 |
K3 | 100.6 | 2.13 | 6255 |
L3 | 98.2 | 2.02 | 6198 |
L5 | 97.7 | 2.06 | 6066 |
L7 | 93.1 | 2.11 | 5829 |
Material | ε, % | σm, MPa | εK-S,% | σK-S, MPa | Changing the εK-S Relative to ε, % | Change in σK-S Relative to σm, % |
---|---|---|---|---|---|---|
K0 | 1.86 | 127.3 | 1.6 | 113 | −14 | −11 |
K1 | 1.82 | 108.4 | 1.2 | 84 | −34 | −23 |
K2 | 2.15 | 103.7 | 1.4 | 70 | −35 | −32 |
K3 | 2.13 | 100.6 | 1.3 | 69 | −39 | −31 |
L3 | 2.02 | 98.2 | 1.2 | 64 | −41 | −35 |
L5 | 2.06 | 97.7 | 1.2 | 63 | −42 | −36 |
L7 | 2.11 | 93.1 | 0.7 | 38 | −67 | −59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żuk, D.; Abramczyk, N.; Hajdukiewicz, G. Analysis of the Strength Properties of Epoxy–Glass Composites Modified with the Addition of Rubber Recyclate Using Kolmogorov–Sinai Metric Entropy. Materials 2024, 17, 411. https://doi.org/10.3390/ma17020411
Żuk D, Abramczyk N, Hajdukiewicz G. Analysis of the Strength Properties of Epoxy–Glass Composites Modified with the Addition of Rubber Recyclate Using Kolmogorov–Sinai Metric Entropy. Materials. 2024; 17(2):411. https://doi.org/10.3390/ma17020411
Chicago/Turabian StyleŻuk, Daria, Norbert Abramczyk, and Grzegorz Hajdukiewicz. 2024. "Analysis of the Strength Properties of Epoxy–Glass Composites Modified with the Addition of Rubber Recyclate Using Kolmogorov–Sinai Metric Entropy" Materials 17, no. 2: 411. https://doi.org/10.3390/ma17020411
APA StyleŻuk, D., Abramczyk, N., & Hajdukiewicz, G. (2024). Analysis of the Strength Properties of Epoxy–Glass Composites Modified with the Addition of Rubber Recyclate Using Kolmogorov–Sinai Metric Entropy. Materials, 17(2), 411. https://doi.org/10.3390/ma17020411