Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Installation and Sample Analysis
2.2. Statistical Methodology and Data Refining
- for each of the variables, the number of bars was determined;
- for each of the variables, bar widths were determined in proportion to the range;
- the smallest width was selected and the global number of bars for the full range was recalculated;
- the target width of the bars () was selected using the ‘pretty’ algorithm, where the previously calculated global number of bars was provided as a hint.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jóźwiakowski, K.; Marzec, M.; Juśko, A.K.; Gizińska-Górnaa, M.; Pytka-Woszczyło, A.; Malik, A.; Listosz, A.; Gajewska, M. 25 Years of research and experiences about the application of constructed wetlands in southeastern Poland. Ecol. Eng. 2019, 127, 440–453. [Google Scholar] [CrossRef]
- Kołecka, K.; Obarska-Pempkowiak, H.; Gajewska, M. Treatment wetlands as the implementation of the circular economy. Annu. Set Environ. Prot. 2018, 20, 1350–1371. (In Polish) [Google Scholar]
- Karolinczak, B.; Miłaszewski, R.; Sztuk, A. Cost-effectiveness analysis of different technological variants of single-house sewage treatment plants. Annu. Set Environ. Prot./Rocz. Ochr. Sr. 2015, 17, 726–746. (In Polish) [Google Scholar]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Pempkowiak, J. Domestic Wastewater Treatment/Treatment Wetlands for Environmental Pollution Control; Springer International Publishing: Cham, Switzerland, 2015; pp. 15–87. [Google Scholar] [CrossRef]
- Jakubowicz, P.; Fitobór, K.; Gajewska, M.; Drewnowska, M. Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland. Sustainability 2022, 14, 1105. [Google Scholar] [CrossRef]
- Karolinczak, B.; Dąbrowski, W. Effectiveness of septage pre-treatment in subsurface vertical flow constructed wetlands. Water Sci. Technol. 2017, 76, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Kołecka, K.; Obarska-Pempkowiak, H.; Gajewska, M. Polish experience in operation of sludge treatment reed beds. Ecol. Eng. 2018, 120, 405–410. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Brix, H.; Schierup, H. Danish experience with sewage treatment in constructed wetlands. In Constructed Wetlands for Wastewater Treatment; Hammer, D.A., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 565–573. [Google Scholar]
- Kickuth, R. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. In Utilization of Manure by Land Spreading; The Commission of the European Communities: Luxembourg, 1977; pp. 335–343. [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Nivala, J.; van Afferden, M.; Hasselbach, R.; Langergraber, G.; Molle, P.; Rustige, H.; Nowak, J. The new German standard on constructed wetland systems for treatment of domestic and municipal wastewater. Water Sci. Technol. 2018, 78, 2414–2426. [Google Scholar] [CrossRef]
- Ji, Z.H.; Feng, C.L.; Wu, X.F.; Zhou, S.Y.; Huang, H.M. Research progress on filler application and purification mechanisms in constructed wetland wastewater treatment system. Chin. J. Ecol. 2016, 35, 2234–2243. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 2013, 470C–471C, 1281–1306. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhao, Y.; Kearney, P. Transformation of beneficially reused aluminium sludge to potential P and Al resource after employing as P-trapping material for wastewater treatment in constructed wetland. Chem. Eng. J. 2011, 174, 206–212. [Google Scholar] [CrossRef]
- Pinho, H.; Vaz, M.M.N.; Mateus, D. Comparative evaluation of low cost materials as constructed wetland filling media. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering, Thessaloniki, Greece, 21–25 April 2017; Volume 1906. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, K.; Zhang, Z.; Shang, X.; Wu, F. Waste Brick as Constructed Wetland Fillers to Treat the Tail Water of Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 2020, 104, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Chiou, I.-J.; Wang, K.-S.; Chen, C.-H.; Lin, Y.-T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manag. 2006, 26, 1453–1461. [Google Scholar] [CrossRef]
- Adám, K.; Krogstad, T.; Vråle, L.; Søvik, A.; Jenssen, P. Phosphorus retention in the filter materials shellsand and Filtralite P ®—Batch and column experiment with synthetic P solution and secondary wastewater. Ecol. Eng. 2007, 29, 200–208. [Google Scholar] [CrossRef]
- Satish, C.; Berntsson, L. Lightweight Aggregate Concrete: Science, Technology and Applications; Noyes Publication, Wiliam Andrew Publishing: Norwich, NY, USA, 2002; ISBN 0-8155-1486-7. [Google Scholar]
- Zukri, A.; Nazir, R.; Nissa, K.; Moayedi, H. Physical and Mechanical Properties of Lightweight Expanded Clay Aggregate (LECA). MATEC Web Conf. 2018, 250, 01016. [Google Scholar] [CrossRef]
- Mæhlum, T.; Jenssen, P.; Warner, W.S. Cold-climate constructed wetlands. Water Sci. Technol. 1995, 32, 95–101. [Google Scholar] [CrossRef]
- Öövel, M.; Tooming, A.; Mauring, T.; Mander, Ü. Schoolhouse Wastewater Purification in a LWA-Filled Hybrid Constructed Wetland in Estonia. Ecol. Eng. 2007, 29, 17–26. [Google Scholar] [CrossRef]
- Łuczaj, K.; Sokołowski, J.; Świtka, K.J.; Kabaciński, M. Method and a System for Producing a Lightweight Ceramic Aggregate, Particularly from Coal Ash. United States Patent US9938196B2, 10 April 2018. [Google Scholar]
- Przychodzień, P.; Katzer, J. Properties of Structural Lightweight Aggregate Concrete Based on Sintered Fly Ash and Modified with Exfoliated Vermiculite. Materials 2021, 14, 5922. [Google Scholar] [CrossRef]
- PN-EN 13055-1:2003; Lightweight Aggregates for Concrete, Mortar, and Grout. Polish Committee for Standardization: Warsaw, Poland, 2003.
- PN-EN 13055-2:2006; Lightweight Aggregates for Bituminous Mixtures and Surface Treatments, Unbound and Bound Applications. Polish Committee for Standardization: Warsaw, Poland, 2006.
- Małaszkiewicz, D.; Jastrzębski, D. Lightweight self-compacting concrete with sintered fly-ash aggregate. Przegląd Nauk. Inżynieria I Kształtowanie Sr. 2018, 27, 328–337. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Gaigall, D. Rothman–Woodroofe symmetry test statistic revisited. Comput. Stat. Data Anal. 2020, 142, 106837. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Oxfordshire, UK, 1986; ISBN 9780412246203. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 22 April 2023).
- Ivanović, B.; Milośević, B.; Obradović, M. Symmetry: Testing for Symmetry of Data and Model Residuals. 2020. Available online: https://CRAN.R-project.org/package=symmetry (accessed on 19 June 2021).
- Gajewska, M.; Obarska-Pempkowiak, H. Efficiency of pollutant removal by five multistage constructed wetlands in a temperate climate. Environ. Prot. Eng. 2011, 37, 27–36. [Google Scholar]
- Jóźwiakowski, K. Badania skuteczności oczyszczania ścieków w wybranych systemach gruntowo-roślinnych. Infrastruktura i Ekologia Terenów Wiejskich 2012. [Google Scholar]
- Gajewska, M.; Tuszyńska, A.; Obarska-Pempkowiak, H. Influence of configurations of the beds on contaminations removal in hybrid constructed wetlands. Pol. J. Environ. Stud. 2004, 13, 149–152. [Google Scholar]
- Molle, P.; Lienard, A.; Boutin, C.; Merlin, G.; Iwema, A. How to treat raw sewage with constructed wetlands: An overview of the French systems. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2005, 51, 11–21. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Chen, B.; Zhou, J.; Li, Z.; Zhou, Y.; Xi, X.; Chen, G. A Vertical Subsurface-Flow Constructed Wetland in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1986–1997. [Google Scholar] [CrossRef]
- Puchlik, M. Constructed wetlands aided with bio-preparation to neutralize wastewater from a small fruit and vegetable processing plant with high load pollutants. E3S Web Conf. 2019, 100, 00067. [Google Scholar] [CrossRef]
- Obarska-Pempkowiak, H.; Kołecka, K. Experiences of Salix viminalis application to water and sewage treatment. Ecohydrol. Hydrobiol. 2007, 7, 235–241. [Google Scholar] [CrossRef]
- Paruch, A.M.; Mæhlum, T.; Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Rural domestic wastewater treatment in Norway and Poland: Experiences, cooperation and concepts on the improvement of constructed wetland technology. Water Sci. Technol. 2011, 63, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; D’Angelo, E. Soil processes regulating water quality in wetlands. In Global Wetlands Old World and New; Mitch, W.J., Ed.; Elsevier: Amsterdam, The Netherland, 1994; pp. 309–324. [Google Scholar]
- Pytka-Woszczyło, A.; Różańska-Boczula, M.; Gizińska-Górna, M.; Marzec, M.; Listosz, A.; Jóźwiakowski, K. Efficiency of Filters Filled with Rockfos for Phosphorus Removal from Domestic Sewage. Adv. Sci. Technol. Res. J. 2022, 16, 176–188. [Google Scholar] [CrossRef]
- Gajewska, M.; Obarska-Pempkowiak, H. The role of SSVF and SSHF beds in concentrated wastewater treatment, design recommendation. Water Sci. Technol. 2011, 64, 431–439. [Google Scholar] [CrossRef]
Parameter | Whole Research Period | Vegetation Period | Non-Vegetation Period |
---|---|---|---|
Period | Load, g·m−2·d−1 | BOD5 | COD | SS |
---|---|---|---|---|
Whole period | ||||
Veg. period | ||||
Non-veg. period | ||||
Period | Load, g·m−2·d−1 | TN | N-NH4 | TP |
---|---|---|---|---|
Whole period | ||||
Veg. period | ||||
Non-veg. period | ||||
Period | Normality Test | Paired Test | Δη | ||||
---|---|---|---|---|---|---|---|
W Statistics | p-Value | Version | Statistics | p-Value | |||
Non-veg | 0.96281 | 0.4731 | T | t = 10.362 | 0.040 | ||
Veg | 0.91165 | 0.0920 | T | t = 17.178 | 0.027 | ||
Non-veg | 0.96815 | 0.5986 | T | t = 7.468 | 0.033 | ||
Veg | 0.95179 | 0.4538 | T | t = 14.304 | 0.029 | ||
Non-veg | 0.91898 | 0.0486 | Wilcoxon | V = 325 | 0.076 | ||
Veg | 0.95450 | 0.5000 | T | t = 9.7821 | 0.042 | ||
Non-veg | 0.96365 | 0.4918 | T | t = 14.618 | 0.090 | ||
Veg | 0.84572 | 0.0073 | Wilcoxon | V = 171 | 0.016 | ||
Non-veg | 0.95978 | 0.4102 | T | t = 2.1204 | 0.04451 | 0.014 | |
Veg | 0.95945 | 0.5909 | T | t = 4.347 | 0.028 | ||
Non-veg | 0.94714 | 0.2160 | T | t = −2.4828 | 0.02042 | −0.021 | |
Veg | 0.86944 | 0.0174 | Wilcoxon | V = 11 | −0.031 | ||
Non-veg | 0.94302 | 0.5566 | T | t = −3.845 | 0.003238 | −0.040 | |
Veg | 0.85908 | 0.0476 | Wilcoxon | V = 0 | −0.082 |
BOD5:COD | BOD5:TN | |
---|---|---|
In | ||
Out Gravel | ||
Out Certyd |
DO mg·dm−3 | pH | Conductivity | Alkalinity | |
---|---|---|---|---|
In | ||||
Out Gravel | ||||
Out Certyd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, P.; Dąbrowski, W.; Karolinczak, B. Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials 2024, 17, 389. https://doi.org/10.3390/ma17020389
Malinowski P, Dąbrowski W, Karolinczak B. Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials. 2024; 17(2):389. https://doi.org/10.3390/ma17020389
Chicago/Turabian StyleMalinowski, Paweł, Wojciech Dąbrowski, and Beata Karolinczak. 2024. "Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands" Materials 17, no. 2: 389. https://doi.org/10.3390/ma17020389
APA StyleMalinowski, P., Dąbrowski, W., & Karolinczak, B. (2024). Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials, 17(2), 389. https://doi.org/10.3390/ma17020389