Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Methods
2.1.1. Density Functional Theory Simulations
2.1.2. Deep Neural Network Interatomic Potential Training
2.1.3. Molecular Dynamics Simulations
2.1.4. Phonon Calculations
2.2. Experimental Methods
3. Results and Discussion
3.1. Lattice Parameters—Equilibrium Volume
3.2. Bond Distances and Radial Distribution Functions
3.3. Thermal Properties
3.4. Anisotropic Coefficients of Thermal Expansion
3.5. Transferability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Opila, E.J.; Smialek, J.L.; Robinson, R.C.; Fox, D.S.; Jacobson, N.S. SiC Recession Caused by SiO2 Scale Volatility under Combustion Conditions: II, Thermodynamics and Gaseous-Diffusion Model. J. Am. Ceram. Soc. 1999, 82, 1826–1834. [Google Scholar] [CrossRef]
- Smialek, J.L.; Robinson, R.C.; Opila, E.J.; Fox, D.S.; Jacobson, N.S. SiC and Si3N4 Recession Due to SiO2 Scale Volatility under Combustor Conditions. Adv. Compos. Mater. 1999, 8, 33–45. [Google Scholar] [CrossRef]
- Ito, J.; Johnson, H. Synthesis and Study of Yttrialite. Am. Mineral. 1968, 53, 1940–1952. [Google Scholar]
- Ayyasamy, M.V.; Deijkers, J.A.; Wadley, H.N.G.; Balachandran, P.V. Density Functional Theory and Machine Learning Guided Search for RE2Si2O7 with Targeted Coefficient of Thermal Expansion. J. Am. Ceram. Soc. 2020, 103, 4489–4497. [Google Scholar] [CrossRef]
- Fujii, S.; Ioki, A.; Yokoi, T.; Yoshiya, M. Role of Phonons on Phase Stabilization of RE2Si2O7 over Wide Temperature Range (RE = Yb, Gd). J. Eur. Ceram. Soc. 2019, 39, 1477–1486. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J. First-Principles Investigation on the Corrosion Resistance of Rare Earth Disilicates in Water Vapor. J. Eur. Ceram. Soc. 2009, 29, 2163–2167. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, L.; Li, Z.; Li, J.; Wang, J. Exploration of the Low Thermal Conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as Novel Environmental Barrier Coating Candidates. J. Eur. Ceram. Soc. 2016, 36, 2813–2823. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Wang, J.J.J.; Wu, Z.; Lv, X.; Wang, J.J.J. Material-Genome Perspective towards Tunable Thermal Expansion of Rare-Earth Di-Silicates. J. Eur. Ceram. Soc. 2018, 38, 3547–3554. [Google Scholar] [CrossRef]
- Xiang, H.; Feng, Z.; Zhou, Y. Mechanical and Thermal Properties of Yb2SiO5: First-Principles Calculations and Chemical Bond Theory Investigations. J. Mater. Res. 2014, 29, 1609–1619. [Google Scholar] [CrossRef]
- Hazen, R.M.; Prewitt, C.T. Effects of Temperature and Pressure on Interatomic Distances in Oxygen-Based Minerals. Elastic Prop. Equ. State 2011, 62, 407–413. [Google Scholar] [CrossRef]
- Fernández-Carrión, A.J.; Allix, M.; Becerro, A.I. Thermal Expansion of Rare-Earth Pyrosilicates. J. Am. Ceram. Soc. 2013, 96, 2298–2305. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, L.; Wang, H.; E, W.; Srolovitz, D.J. Deep Potentials for Materials Science. Mater. Futur. 2022, 1, 022601. [Google Scholar] [CrossRef]
- Kaufmann, K.; Maryanovsky, D.; Mellor, W.M.; Zhu, C.; Rosengarten, A.S.; Harrington, T.J.; Oses, C.; Toher, C.; Curtarolo, S.; Vecchio, K.S. Discovery of High-Entropy Ceramics via Machine Learning. NPJ Comput. Mater. 2020, 6, 42. [Google Scholar] [CrossRef]
- Akrami, S.; Edalati, P.; Fuji, M.; Edalati, K. High-Entropy Ceramics: Review of Principles, Production and Applications. Mater. Sci. Eng. R Rep. 2021, 146, 100644. [Google Scholar] [CrossRef]
- Cameron, M.; Sueno, S.; Prewitt, C.T.; Papike, J.J. High-Temperature Crystal Chemistry of Acmite, Diopside, Hedenbergite, Jadeite, Spodumene, and Ureyite. Am. Mineral. 1973, 58, 594–618. [Google Scholar]
- Smith, J.R. An Orthopyroxene Structure Up to 850 °C. Am. Mineral. 1973, 58, 636–648. [Google Scholar]
- Brown, G.E.; Prewitt, C.T.; Brook, S.; York, N. High-Temperature Crystal Chemistry of Hortonolite. Am. Mineral. J. Earth Planet. Mater. 1973, 58, 577–587. [Google Scholar]
- Peacor, D.R. High-Temperature, Single-Crystal X-ray Study of Natrolite. Am. Mineral. 1973, 58, 676–680. [Google Scholar]
- Smith, J.R. High Temperature Crystal Chemistry of Fayalite. Am. Mineral. 1975, 60, 1092–1097. [Google Scholar]
- Sueno, S.; Cameron, M.; Prewitt, C.T. Orthoferrosilite; High-Temperature Crystal Chemistry. Am. Mineral. 1976, 61, 38–53. [Google Scholar]
- Meagher, E.P. The Crystal Structures of Pyrope and Grossularite at Elevated Temperatures. Am. Mineral. 1975, 60, 218–228. [Google Scholar]
- Hazen, R.M. Effects of Temperature and Pressure on the Crystal Structure of Ferromagnesian Olivine. Am. Mineral. 1977, 62, 286–295. [Google Scholar]
- Stokes, J.L.; Harder, B.J.; Wiesner, V.L.; Wolfe, D.E. Crystal Structures and Thermal Expansion of Yb2Si2O7–Gd2Si2O7 Solid Solutions. J. Solid State Chem. 2022, 312, 123166. [Google Scholar] [CrossRef]
- Stokes, J.L.; Bodenschatz, C.J.; Harder, B.J.; Wiesner, V.L.; Saidi, W.A.; Wolfe, D.E. Influence of Cation Species on Thermal Expansion of Y2Si2O7–Gd2Si2O7 Solid Solutions. J. Solid State Chem. 2023, 327, 124229. [Google Scholar] [CrossRef]
- Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S.P. A Critical Review of Machine Learning of Energy Materials. Adv. Energy Mater. 2020, 10, 1903242. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Materials, N.; Ridge, O.; Ridge, O. Materials Science in the Arti Fi Cial Intelligence Age: High-Throughput Library Generation, Machine Learning, and a Pathway from Correlations to the Underpinning Physics. MRS Commun. 2020, 9, 821–838. [Google Scholar] [CrossRef] [PubMed]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and Materials Science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Wei, J.; Chu, X.; Sun, X.Y.; Xu, K.; Deng, H.X.; Chen, J.; Wei, Z.; Lei, M. Machine Learning in Materials Science. InfoMat 2019, 1, 338–358. [Google Scholar] [CrossRef]
- Morgan, D.; Jacobs, R. Opportunities and Challenges for Machine Learning in Materials Science. Annu. Rev. Mater. Res. 2020, 50, 71–103. [Google Scholar] [CrossRef]
- Sparks, T.D.; Kauwe, S.K.; Parry, M.E.; Tehrani, A.M.; Brgoch, J. Machine Learning for Structural Materials. Annu. Rev. Mater. Res. 2020, 50, 27–48. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.M.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to Machine Learning: Recent Approaches to Materials Science—A Review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science. APL Mater. 2016, 4, 053208. [Google Scholar] [CrossRef]
- Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. SchNet—A Deep Learning Architecture for Molecules and Materials. J. Chem. Phys. 2018, 148, 241722. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S.P. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chem. Mater. 2019, 31, 3564–3572. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. arXiv 2017, arXiv:1710.10324. [Google Scholar] [CrossRef]
- Khorshidi, A.; Peterson, A.A. Amp: A Modular Approach to Machine Learning in Atomistic Simulations. Comput. Phys. Commun. 2016, 207, 310–324. [Google Scholar] [CrossRef]
- Artrith, N.; Urban, A. An Implementation of Artificial Neural-Network Potentials for Atomistic Materials Simulations: Performance for TiO2. Comput. Mater. Sci. 2016, 114, 135–150. [Google Scholar] [CrossRef]
- Smith, J.S.; Isayev, O.; Roitberg, A.E. ANI-1: An Extensible Neural Network Potential with DFT Accuracy at Force Field Computational Cost. Chem. Sci. 2017, 8, 3192–3203. [Google Scholar] [CrossRef]
- Chen, C.; Ong, S.P. A Universal Graph Deep Learning Interatomic Potential for the Periodic Table. Nat. Comput. Sci. 2022, 2, 718–728. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B. Atomistic Line Graph Neural Network for Improved Materials Property Predictions. NPJ Comput. Mater. 2021, 7, 185. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Han, J.; E, W.; Weinan, E. DeePMD-Kit: A Deep Learning Package for Many-Body Potential Energy Representation and Molecular Dynamics. Comput. Phys. Commun. 2018, 228, 178–184. [Google Scholar] [CrossRef]
- Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401. [Google Scholar] [CrossRef] [PubMed]
- Behler, J. Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials. J. Chem. Phys. 2011, 134, 074106. [Google Scholar] [CrossRef] [PubMed]
- Bartók, A.P.; Kondor, R.; Csányi, G. On Representing Chemical Environments. Phys. Rev. B 2013, 87, 184115. [Google Scholar] [CrossRef]
- Musil, F.; Grisafi, A.; Bartók, A.P.; Ortner, C.; Csányi, G.; Ceriotti, M. Physics-Inspired Structural Representations for Molecules and Materials. Chem. Rev. 2021, 121, 9759–9815. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, L.; Liu, S. Deep Learning of Accurate Force Field of Ferroelectric HfO2. Phys. Rev. B 2021, 103, 024108. [Google Scholar] [CrossRef]
- Andolina, C.M.; Wright, J.G.; Das, N.; Saidi, W.A. Improved Al-Mg Alloy Surface Segregation Predictions with a Machine Learning Atomistic Potential. Phys. Rev. Mater. 2021, 5, 083804. [Google Scholar] [CrossRef]
- Fronzi, M.; Amos, R.D.; Kobayashi, R.; Matsumura, N.; Watanabe, K.; Morizawa, R.K. Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles. Nanomaterials 2022, 12, 3891. [Google Scholar] [CrossRef]
- Andolina, C.M.; Bon, M.; Passerone, D.; Saidi, W.A. Robust, Multi-Length-Scale, Machine Learning Potential for Ag-Au Bimetallic Alloys from Clusters to Bulk Materials. J. Phys. Chem. C 2021, 125, 17438–17447. [Google Scholar] [CrossRef]
- Bayerl, D.; Andolina, C.M.; Dwaraknath, S.; Saidi, W.A. Convergence Acceleration in Machine Learning Potentials for Atomistic Simulations. Digit. Discov. 2022, 1, 61–69. [Google Scholar] [CrossRef]
- Wisesa, P.; Andolina, C.M.; Saidi, W.A. Development and Validation of Versatile Deep Atomistic Potentials for Metal Oxides. J. Phys. Chem. Lett. 2023, 14, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, J.; Wang, H.; Car, R.; Weinan, E. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001. [Google Scholar] [CrossRef] [PubMed]
- Drautz, R. Atomic Cluster Expansion for Accurate and Transferable Interatomic Potentials. Phys. Rev. B 2019, 99, 014104. [Google Scholar] [CrossRef]
- Lysogorskiy, Y.; van der Oord, C.; Bochkarev, A.; Menon, S.; Rinaldi, M.; Hammerschmidt, T.; Mrovec, M.; Thompson, A.; Csányi, G.; Ortner, C.; et al. Performant Implementation of the Atomic Cluster Expansion (PACE) and Application to Copper and Silicon. Npj Comput. Mater. 2021, 7, 97. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Erratum: Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces (Physical Review Letters (2008) 100). Phys. Rev. Lett. 2009, 102, 39902. [Google Scholar] [CrossRef]
- Andolina, C.M.; Williamson, P.; Saidi, W.A. Optimization and Validation of a Deep Learning CuZr Atomistic Potential: Robust Applications for Crystalline and Amorphous Phases with near-DFT Accuracy. J. Chem. Phys. 2020, 152, 154701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, J.; Wang, H.; Saidi, W.A.; Car, R.; Weinan, E. End-to-End Symmetry Preserving Inter-Atomic Potential Energy Model for Finite and Extended Systems. Adv. Neural Inf. Process Syst. 2018, 2018, 4436–4446. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Togo, A.; Chaput, L.; Tanaka, I.; Hug, G. First-Principles Phonon Calculations of Thermal Expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 81, 174301. [Google Scholar] [CrossRef]
- Carreras, A. PhonoLAMMPS. Available online: https://phonolammps.readthedocs.io/ (accessed on 14 November 2023).
- ASTM Standard E1269-11R18; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning. Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2018; pp. 1–6. [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++: An. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Liddell, K.; Thompson, D.P. X-ray Diffraction Data for Yttrium Silicates. Br. Ceram. Trans. J. 1986, 85, 17–22. [Google Scholar]
- Dolan, M.D.; Harlan, B.; White, J.S.; Hall, M.; Misture, S.T.; Bancheri, S.C.; Bewlay, B. Structures and Anisotropic Thermal Expansion of the α, β, γ, and δ Polymorphs of Y2Si2O7. Powder Diffr. 2008, 23, 20–25. [Google Scholar] [CrossRef]
- Leonyuk, N.I.; Belokoneva, E.L.; Bocelli, G.; Righi, L.; Shvanskii, E.V.; Henrykhson, R.V.; Kulman, N.V.; Kozhbakhteeva, D.E. High-Temperature Crystallization and X-ray Characterization of Y2SiO5, Y2Si2O7 and LaBSiO5. J. Cryst. Growth 1999, 205, 361–367. [Google Scholar] [CrossRef]
- Smolin, Y.I.; Shepelev, Y.F. The Crystal Structures of the Rare Earth Pyrosilicates. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 484–492. [Google Scholar] [CrossRef]
- Fukuda, K.; Matsubara, H. Thermal Expansion of Yttrium Disilicate. J. Am. Ceram. Soc. 2004, 87, 89–92. [Google Scholar] [CrossRef]
- Dias, H.W.; Glasser, F.P.; Gunwardane, R.P.; Howie, R.A. The Crystal Structure of δ-Yttrium Pyrosilicate, δ- Y2Si2O7. Zeitschrift für Krist—Cryst. Mater. 1990, 191, 117–124. [Google Scholar] [CrossRef]
- Stokes, J. Thermal Expansion Coefficients of Ca2Y8(SiO4)6O2 and Ca2Yb8(SiO4)6O2 Apatite-Type Silicates. 2021. Available online: http://www.sti.nasa.gov (accessed on 14 November 2023).
- Christensen, A.N.; Hazell, R.G.; Hewat, A.W. Synthesis, Crystal Growth and Structure Investigations of Rare-Earth Disilicates and Rare-Earth Oxyapatites. Acta Chem. Scand. 1997, 51, 37–43. [Google Scholar] [CrossRef]
- Mao, H.; Selleby, M.; Fabrichnaya, O. Thermodynamic Reassessment of the Y2O3-Al2O3-SiO2 System and Its Subsystems. Calphad Comput. Coupling Phase Diagrams Thermochem. 2008, 32, 399–412. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Li, Y.; Wang, J. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate. Sci. Rep. 2016, 6, 29801. [Google Scholar] [CrossRef]
- Renthlei, Z.; Prasad, M.; Sivakumar, J.; Zuala, L.; Pachuau, L.; Devi, Y.R.; Singh, N.S.; Abdurakhmanov, G.; Laref, A.; Rai, D.P. A Thorough Investigation of Electronic, Optical, Mechanical, and Thermodynamic Properties of Stable Glasslike Sodium Germanate under Compressive Hydrostatic Pressure: Ab Initio Study. ACS Omega 2023, 8, 16869–16882. [Google Scholar] [CrossRef]
- Ruminy, M.; Valdez, M.N.; Wehinger, B.; Bosak, A.; Adroja, D.T.; Stuhr, U.; Iida, K.; Kamazawa, K.; Pomjakushina, E.; Prabakharan, D.; et al. First-Principles Calculation and Experimental Investigation of Lattice Dynamics in the Rare-Earth Pyrochlores R2Ti2O7 (R = Tb,Dy,Ho). Phys. Rev. B 2016, 93, 214308. [Google Scholar] [CrossRef]
- Ding, Z.; Ridley, M.; Deijkers, J.; Liu, N.; Bin Hoque, M.S.; Gaskins, J.; Zebarjadi, M.; Hopkins, P.; Wadley, H.; Opila, E.; et al. The Thermal and Mechanical Properties of Hafnium Orthosilicate: Experiments and First-Principles Calculations. Materialia 2020, 12, 100793. [Google Scholar] [CrossRef]
- Lai, K.; Wang, Y. Ph3pyWF: An Automated Workflow Software Package for Ceramic Lattice Thermal Conductivity Calculation. arXiv 2023, arXiv:2302.11641. [Google Scholar]
- Sun, Z.; Zhou, Y.; Wang, J.; Li, M. Thermal Properties and Thermal Shock Resistance of γ-Y2Si2O7. J. Am. Ceram. Soc. 2008, 91, 2623–2629. [Google Scholar] [CrossRef]
- Cordfunke, E.H.P.; Booij, A.S.; Van Der Laan, R.R. The Thermochemical Properties of Y2Si2O7 and Dy2Si2O7. J. Chem. Thermodyn. 1998, 30, 199–205. [Google Scholar] [CrossRef]
- Fabrichnaya, O.; Seifert, H.J.; Ludwig, T.; Aldinger, F.; Navrotsky, A. The Assessment of Thermodynamic Parameters in the Al2O3-Y2O3 System and Phase Relations in the Y-Al-O System. Scand. J. Metall. 2001, 30, 175–183. [Google Scholar] [CrossRef]
- Kolitsch, U. On the Constitution of the Systems of Rare Earths, Yttria, and Scandia with SiO2, Al2O3, and MgO. Diploma Thesis, University of Stuttgart, Stuttgart, Germany, 1992. [Google Scholar]
- Aparicio, M.; Durán, A. Yttrium Silicate Coatings for Oxidation Protection of Carbon-Silicon Carbide Composites. J. Am. Ceram. Soc. 2000, 83, 1351–1355. [Google Scholar] [CrossRef]
Phase | Theory | a | b | c | α | β | γ |
---|---|---|---|---|---|---|---|
β C2/m | DFT (PBE) | 6.914 | 9.063 | 4.781 | 90 | 101.97 | 90 |
DFT (PBEsol) | 6.854 | 8.965 | 4.740 | 90 | 101.79 | 90 | |
DNP (PBE *) | 6.898 | 9.047 | 4.768 | 90 | 101.95 | 90 | |
Ref. [72] | 6.88 | 8.97 | 4.72 | 90 | 101.7 | 90 | |
Ref. [78] | 6.873 | 8.970 | 4.718 | 90 | 101.72 | 90 | |
γ | DFT (PBE) | 4.753 | 10.901 | 5.633 | 90 | 96.18 | 90 |
P21/c | DFT (PBEsol) | 4.710 | 10.813 | 5.569 | 90 | 95.98 | 90 |
DNP (PBE *) | 4.739 | 10.885 | 5.621 | 90 | 96.14 | 90 | |
Ref. [73] | 4.68824 (5) | 10.84072 (9) | 5.58219 (6) | 90 | 96.0325 (3) | 90 | |
Ref. [74] | 4.69 | 10.86 | 5.59 | 90 | 96.01 | 90 | |
Ref. [75] | 4.663 (5) | 10.784 (21) | 5.536 (5) | 90 | 96.06 | 90 | |
Ref. [76] | 4.6881 (2) | 10.8416 (5) | 5.5824 (2) | 90 | 96.035 (1) | 90 | |
Ref. [78] | 4.685 | 10.842 | 5.583 | 90 | 96.046 | 90 | |
Ref. [79] | 4.6916 (4) | 10.8521 (10) | 5.5872 (5) | 90 | 96.040 (3) | 90 | |
δ | DFT (PBE) | 13.802 | 5.087 | 8.196 | 90 | 90 | 90 |
Pna21 | DFT (PBEsol) | 13.619 | 5.027 | 8.121 | 90 | 90 | 90 |
DNP (PBE *) | 13.772 | 5.074 | 8.186 | 90 | 90 | 90 | |
Ref. [75] | 13.69 (2) | 5.020 (5) | 8.165 (10) | 90 | 90 | 90 | |
Ref. [77] | 13.81 | 5.02 | 8.30 | 90 | 90 | 90 | |
Ref. [78] | 13.663 | 5.020 | 8.150 | 90 | 90 | 90 |
Phase | T Range [K] | a (×10−6 K−1) | b (×10−6 K−1) | c (×10−6 K−1) | Average Bulk Linear CTE (×10−6 K−1) | |
---|---|---|---|---|---|---|
β C2/m | DNP | 200–2000 | 7.45 | 4.98 | 0.89 | 4.33 |
Ref. [24] | 298.15–1773.15 | 8.13 | 4.66 | 1.41 | 4.73 | |
Ref. [73] | 293.15–1473.15 293.15–1673.15 | 5.74 6.23 | 4.17 4.37 | 2.23 2.12 | 4.0 4.1 | |
γ P21/c | DNP | 200–2000 | 6.89 | 6.83 | 0.79 | 4.77 |
Ref. [24] | 298.15–1773.15 | 6.14 | 6.67 | 1.11 | 4.64 | |
Ref. [73] | 293.15–1473.15 | 0.69 | 5.90 | 5.17 | 3.9 | |
Ref. [76] | 504 | 2.2 | ||||
Ref. [76] | 1473 | 3.8 | ||||
Ref. [86] | 293–1527 | 3.9 | ||||
Ref. [90] | 293–1273 | 4.6 | ||||
δ Pna21 | DNP | 200–2000 | 11.80 | 11.48 | 3.92 | 9.20 |
Ref. [24] | 298.15–1773.15 | 11.22 | 10.43 | 2.41 | 8.02 | |
Ref. [73] | 293.15–1473.15 293.15–1673.15 | 10.40 10.75 | 9.92 10.32 | 2.48 2.59 | 7.7 8.1 |
Phase | Theory | a | b | c | α | β | Γ |
---|---|---|---|---|---|---|---|
α | DFT (PBE) | 6.660 | 6.694 | 12.153 | 94.07 | 91.53 | 92.11 |
DFT (PBEsol) | 6.593 | 6.616 | 12.00 | 94.47 | 91.08 | 91.84 | |
DNP (PBE *) | 6.655 | 6.693 | 12.162 | 94.50 | 91.21 | 91.89 | |
Expt. † | 6.581 | 6.633 | 12.021 | 94.53 | 89.03 | 88.23 | |
Ref. [73] | 6.5881(4) | 6.6392(6) | 12.031(1) | 94.479(7) | 90.946(7) | 91.800(6) |
Phase | T Range [K] | a (×10−6 K−1) | b (×10−6 K−1) | c (×10−6 K−1) | Average Bulk Linear CTE (×10−6 K−1) | |
---|---|---|---|---|---|---|
α | DNP | 200–2000 | 5.36 | 12.47 | 12.95 | 10.77 |
Expt.† | 298.15–1373.15 | 5.36 | 8.49 | 9.33 | 7.72 | |
Ref. [73] | 293.15–1473.15 | 5.21 | 8.60 | 10.29 | 8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodenschatz, C.J.; Saidi, W.A.; Stokes, J.L.; Webster, R.I.; Costa, G. Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment. Materials 2024, 17, 286. https://doi.org/10.3390/ma17020286
Bodenschatz CJ, Saidi WA, Stokes JL, Webster RI, Costa G. Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment. Materials. 2024; 17(2):286. https://doi.org/10.3390/ma17020286
Chicago/Turabian StyleBodenschatz, Cameron J., Wissam A. Saidi, Jamesa L. Stokes, Rebekah I. Webster, and Gustavo Costa. 2024. "Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment" Materials 17, no. 2: 286. https://doi.org/10.3390/ma17020286
APA StyleBodenschatz, C. J., Saidi, W. A., Stokes, J. L., Webster, R. I., & Costa, G. (2024). Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment. Materials, 17(2), 286. https://doi.org/10.3390/ma17020286